Climate Change Threatens the Geographic Distribution of Cupuaçu More Than Cacao: Insights from Ecological Modeling in Brazil
Visualizações: 140DOI:
https://doi.org/10.15451/ec2025-09-14.31-1-18Palabras clave:
Ecological modeling, Biodiversity, SustainabilityResumen
The perpetuation and evolution of vegetal species can be impacted by climatic changes, and the projection of edaphoclimatic adaptation areas can be studied through ecological modeling. This study aimed to predict the distribution of Theobroma cacao L. (the cacao tree) and Theobroma grandiflorum (Willd. ex Spreng.) K. Schum (the cupuaçu tree) under current and future scenarios to identify areas suitable for environmental adaptation, conservation, and sustainable use. Ecological niche modeling was applied using 33 environmental variables. Results indicated that the cupuaçu tree is more vulnerable to climatic variations, with projections showing a relevant reduction in suitable areas in the Cerrado and Amazon. In contrast, the cacao tree demonstrated greater resilience, with potential expansion into areas such as the Pampa and Atlantic Forest. The modeling confirmed that climatic changes will negatively impact both species, with the cupuaçu tree facing higher susceptibility to loss of suitable areas, while the cacao tree may expand into new territories with appropriate environmental conditions. The study underscores the need for conservation efforts and sustainable use to contribute to the perpetuation of species, drawing from the wisdom of Indigenous peoples.
Descargas
Citas
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) SpThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541-545. doi: https://doi.org/10.1111/ecog.01132 DOI: https://doi.org/10.1111/ecog.01132
Alvarez F, Morandi PS, Marimon-Junior BH, Exavier R, Araújo I, Mariano LH, Muller AO, Felpausch TR, Marimon BS (2022) Climate defined but not soil-restricted: the distribution of a Neotropical tree through space and time. Plant Soil 471:175-191. doi: https://doi.org/10.1007/s11104-021-05202-6 DOI: https://doi.org/10.1007/s11104-021-05202-6
Alves RM, Abreu VA, Oliveira RP, Almeida JV, Oliveira MD, Silva SR, Paschoal AR, Almeida SS, Souza PA, Ferro JA, Miranda VF, Figueira A, Domingues DS, Varani AM (2024) Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: Evolutionary insights for horticultural innovation. GigaScience 13:giae027. doi: https://doi.org/10.1093/gigascience/giae027 DOI: https://doi.org/10.1093/gigascience/giae027
Andrade AFA, Velazco SJE, Marco Júnior P (2020) ENMTML: An R package for a straightforward construction of complex ecological niche models. Environmental Modelling & Software 125:104615. doi: https://doi.org/10.1016/j.envsoft.2019.104615 DOI: https://doi.org/10.1016/j.envsoft.2019.104615
Araújo MS, Chaves SF, Pereira GR, Guimarães MH, Alves AK, Dias LAS, Souza CAS, Aguilar MA (2024) Multi-trait selection for nutritional and physiological quality of cacao genotypes in irrigated and non-irrigated environments. Scientific Reports 14:6368. doi: https://doi.org/10.1038/s41598-024-56556-7 DOI: https://doi.org/10.1038/s41598-024-56556-7
Artaxo P, Hansson HC, Machado LAT, Rizzo LV (2022) Tropical forests are crucial in regulating the climate on Earth. PLOS Climate 1:e0000054. doi: https://doi.org/10.1371/journal.pclm.0000054 DOI: https://doi.org/10.1371/journal.pclm.0000054
Bezerra JDA, Corrêa RF, Sanches EA, Lamarão CV, Stringheta PC, Martins E, Campelo PH (2024) “Cupuaçu” (Theobroma grandiflorum): A brief review on chemical and technological potential of this Amazonian fruit. Food Chemistry Advances 5:100747. doi: https://doi.org/10.1016/j.focha.2024.100747 DOI: https://doi.org/10.1016/j.focha.2024.100747
Bossa-Castro AM, Colli-Silva M, Pirani JR, Whitlock BA, Morales Mancera LT, Contreras-Ortiz N, Richardson JE (2024) A phylogenetic framework to study desirable traits in the wild relatives of Theobroma cacao (Malvaceae). Journal of Systematics and Evolution 62:963-978. doi: https://doi.org/10.1111/jse.13045 DOI: https://doi.org/10.1111/jse.13045
Campos EV, Pereira ADE, Aleksieienko I, Carmo GC, Gohari G, Santaella C, Fraceto LF, Oliveira HC (2023) Encapsulated plant growth regulators and associative microorganisms: Nature-based solutions to mitigate the effects of climate change on plants. Plant Science 331:111688. doi: https://doi.org/10.1016/j.plantsci.2023.111688 DOI: https://doi.org/10.1016/j.plantsci.2023.111688
Ceccarelli V, Fremout T, Chavez E, Argüello D, Solórzano RGL (2024) Vulnerability to climate change of cultivated and wild cacao in Ecuador. Climatic Change 177:103. doi: https://doi.org/10.1007/s10584-024-03756-9 DOI: https://doi.org/10.1007/s10584-024-03756-9
Centro de Referência em Informação Ambiental — CRIA (2023) Projeto speciesLink network. [http://splink.cria.org.br] Accessed 29 April 2023
Cilas C, Bastide P (2020) Challenges to Cocoa Production in the Face of Climate Change and the Spread of Pests and Diseases. Agronomy 10:1232. doi: https://doi.org/10.3390/agronomy10091232 DOI: https://doi.org/10.3390/agronomy10091232
Clement CR, Levis C, Oliveira JC, Fausto C, Santos MG, Baniwa FF, Mehinaku M, Wajãpi A, Wajãpi R, Maia GS (2021) Naturalness Is in the Eye of the Beholder. Frontiers in Forests and Global Change 4:800294. doi: https://doi.org/10.3389/ffgc.2021.800294 DOI: https://doi.org/10.3389/ffgc.2021.800294
Colli-Silva M, Richardson JE, Figueira A, Pirani JR (2024) Human influence on the distribution of cacao: insights from remote sensing and biogeography. Biodiversity and Conservation 33:1009-1025. doi: https://doi.org/10.1007/s10531-023-02777-7 DOI: https://doi.org/10.1007/s10531-023-02777-7
Contreras-Cornejo HA, Schmoll M, Esquivel-Ayala BA, González-Esquivel CE, Rocha-Ramírez V, Larsen J (2024) Abiotic plant stress mitigation by Trichoderma species. Soil Ecology Letters 6:240240. doi: https://doi.org/10.1007/s42832-024-0240-8 DOI: https://doi.org/10.1007/s42832-024-0240-8
Cordeiro AL, Tomaz JS, Bezerra CS, Meneses CHSG, Aguiar AV, Wrege MS, Ramos SLF, Fraxe TJP, Lopes MTG (2023) Prediction of the geographic distribution and conservation of Amazonian Palm trees Astrocaryum acaule MART. and Astrocaryum aculeatum MART. Revista Árvore 47:e4719. doi: https://doi.org/10.1590/1806-908820230000019 DOI: https://doi.org/10.1590/1806-908820230000019
Fick SE, Hijmans RJ (2017) WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302-4315. doi: https://doi.org/10.1002/joc.5086 DOI: https://doi.org/10.1002/joc.5086
Global biodiversity information facility — GBIF (2024) Occurrence Data Download. [https://www.gbif.org] Accessed 29 August 2024
Gomes LM, Bezerra CDS, Aguiar AVD, Wrege MS, Lopes MTG (2022) Prediction of the natural distribution and conservation of Urena lobata L. in Brazil. Pesquisa Agropecuária Tropical 52:e72594 doi: https://doi.org/10.1590/1983-40632022v5272594 DOI: https://doi.org/10.1590/1983-40632022v5272594
Intergovernmental Panel on Climate Change (IPCC) (2021) Climate change: the physical science basis. [https://www.ipcc.ch/report/ar6/wg1/]. Accessed: March 28, 2024 DOI: https://doi.org/10.1017/9781009157896
Jaramillo MA, Reyes-Palencia J, Jiménez P (2024) Floral biology and flower visitors of cocoa (Theobroma cacao L.) in the upper Magdalena Valley, Colombia. Flora 313:152480. doi: https://doi.org/10.1016/j.flora.2024.152480 DOI: https://doi.org/10.1016/j.flora.2024.152480
Khoury CK, Brush S, Costich DE, Curry HA, Haan S, Engels JM, Thormann I (2022) Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist 233:84-118. doi: https://doi.org/10.1111/nph.17733 DOI: https://doi.org/10.1111/nph.17733
Lahive F, Hadley P, Daymond AJ (2019) The physiological responses of cacao to the environment and the implications for climate change resilience: A review. Agronomy for Sustainable Development 39:1-22. doi: https://doi.org/10.1007/s13593-018-0552-0 DOI: https://doi.org/10.1007/s13593-018-0552-0
Lahlali R, Taoussi M, Laasli S, Gachara G, Ezzouggari R, Belabess Z, Aberkani K, Assouguem A, Meddich A, El Jarroudi M, Barka EA (2024) Effects of climate change on plant pathogens and host-pathogen interactions. Crop and Environment 3:159-170. doi: https://doi.org/10.1016/j.crope.2024.05.003 DOI: https://doi.org/10.1016/j.crope.2024.05.003
Lan Z, Hui Liang L, Hong Xiang Z, Yan Feng C, Lingwei Z, Kudusi K, Taxmamat D, Yuanming Z (2022) Potential distribution of three types of ephemeral plants under climate changes. Frontiers in Plant Science 13:1035684. doi: https://doi.org/10.3389/fpls.2022.1035684 DOI: https://doi.org/10.3389/fpls.2022.1035684
Levis C, Flores BM, Campos-Silva JV, Peroni N, Staal A, Padgurschi MC, Clement CR (2024) Contributions of human cultures to biodiversity and ecosystem conservation. Nature Ecology & Evolution 8:866-879. doi: https://doi.org/10.1038/s41559-024-02356-1 DOI: https://doi.org/10.1038/s41559-024-02356-1
Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15:59-69. doi: https://doi.org/10.1111/j.1472-4642.2008.00491.x DOI: https://doi.org/10.1111/j.1472-4642.2008.00491.x
Mathur M, Mathur P, Purohit H (2023) Ecological niche modelling of a critically endangered species Commiphora wightii (Arn.) Bhandari using bioclimatic and non-bioclimatic variables. Ecological Processes 12:1-30. doi: https://doi.org/10.1186/s13717-023-00423-2 DOI: https://doi.org/10.1186/s13717-023-00423-2
Molloy SW, Davis RA, Van Etten EJB (2014) Species distribution modelling using bioclimatic variables to determine the impacts of a changing climate on the western ringtail possum (Pseudocheirus occidentalis; Pseudocheiridae). Environmental Conservation 41:176-186. doi: https://doi.org/10.1017/S0376892913000337 DOI: https://doi.org/10.1017/S0376892913000337
Nieves-Orduña HE, Müller M, Krutovsky KV, Gailing O (2021) Geographic patterns of genetic variation among cacao (Theobroma cacao L.) populations based on chloroplast markers. Diversity 13:249. doi: https://doi.org/10.3390/d13060249 DOI: https://doi.org/10.3390/d13060249
Nousias O, Zheng J, Li T, Meinhardt LW, Bailey B, Gutierrez O, Baruah IK, Cohen SP, Zhang D, Yin Y (2024) Three de novo assembled wild cacao genomes from the Upper Amazon. Scientific Data 11:1-9. doi: https://doi.org/10.1038/s41597-024-03215-1 DOI: https://doi.org/10.1038/s41597-024-03215-1
Oduro KA, Obeng EA, Abukari H, Guuroh RT, Andoh J, Mensah ES, Louman B (2024) Local communities’ adaptation strategies for reducing vulnerabilities to climate change in cocoa-forest dominated landscapes in Ghana. GeoJournal 89:61. doi: https://doi.org/10.1007/s10708-024-11052-3 DOI: https://doi.org/10.1007/s10708-024-11052-3
Reflora Herbário Virtual (2023) [https://reflora.jbrj.gov.br/reflora/herbario] Accessed: March 28, 2024
Rosa JS, Moreira PIO, Carvalho AV, Freitas-Silva O (2024) Cupuassu fruit, a non-timber forest product in sustainable bioeconomy of the Amazon – A mini Review. Processes 12:1353. doi: https://doi.org/10.3390/pr12071353 DOI: https://doi.org/10.3390/pr12071353
RSTUDIO (2024) Undelete and data recovery software. Software livre de ambiente de desenvolvimento integrado para R para análises estatísticas. R version 3.4.1, obtained in: Jan. 8, 2024. Boston, 2024. [https://www.rstudio.com/] Accessed 29 April 2024
Sánchez-Fernández D, Abellán P, Picazo F, Millán A, Ribera I, Lobo JM (2013) Do protected areas represent species' optimal climatic conditions? A test using Iberian water beetles. Diversity and Distributions 19:1407-1417. doi: https://doi.org/10.1111/ddi.12104 DOI: https://doi.org/10.1111/ddi.12104
Shanley P, Clement CR, URANO, JE (2016) Amazonian fruits: how farmers nurture nutritional diversity on farm and in the forest. In: Tropical fruit tree diversity. Routledge, pp. 191-204.
Silva CV, Salimo ZM, Souza TA, Reyes DE, Bassicheto MC, Medeiros LS, Sartim MA, Carvalho JC, Gonçalves JFC, Monteiro WM, Tavares JF, Melo GC, Da Silva FM, Bataglion GA, Koolen HH (2024) Cupuaçu (Theobroma grandiflorum): A Multifunctional Amazonian Fruit with Extensive Benefits. Food Research International 192:114729. doi: https://doi.org/10.1016/j.foodres.2024.114729
Silva CV, Salimo ZM, Souza TA, Reyes DE, Bassicheto MC, Medeiros LS, Koolen HH (2024) Cupuaçu (Theobroma grandiflorum): A multifunctional Amazonian fruit with extensive benefits. Food Research International 192:114729. doi: https://doi.org/10.1016/j.foodres.2024.114729 DOI: https://doi.org/10.1016/j.foodres.2024.114729
Sthapit B, Lamers HAH, Rao VR, Bailey A (Org.) (2016) Tropical fruit tree diversity - good practices for in situ and on-farm conservation. 1ª ed. Oxon, UK: EarthScan/Routledge & Bioversity International, pp. 147-160. DOI: https://doi.org/10.4324/9781315758459
Sultan B, Defrance D, Iizumi T (2019) Evidence of crop production losses in West Africa due to historical global warming in two crop models. Scientific Reports 9:12834. doi: https://doi.org/10.1038/s41598-019-49167-0 DOI: https://doi.org/10.1038/s41598-019-49167-0
Tomaz JS, Bezerra CS, Aguiar AV, Wrege MS, Lopes MTG (2022) Prediction of the natural distribution, habitat and conservation of Stryphnodendron pulcherrimum (Willd.) Hochr. in response to global climate change. Pesquisa Agropecuária Tropical 52:e72422. doi: https://doi.org/10.1590/1983-40632022v5272422 DOI: https://doi.org/10.1590/1983-40632022v5272422
Velazco SJE, Galvão F, Villalobos F, Marco Júnior PD (2017) Using worldwide edaphic data to model plant species niches: An assessment at a continental extent. PLoS ONE 12:e0186025. doi: https://doi.org/10.1371/jour nal.pone.0186025 DOI: https://doi.org/10.1371/journal.pone.0186025
World Soil Information (ISRIC) (2024) SoilGrids — global gridded soil information. [https://www.isric.org/explore/soilgrids] Accessed 29 July 2024.
Zou H, Chen B, Zhang B, Zhou X, Zhang X, Zhang X, Wang J (2023) Conservation planning for the endemic and endangered medicinal plants under the climate change and human disturbance: A case study of Gentiana manshurica in China. Frontiers in Plant Science 14:1184556. doi: https://doi.org/10.3389/fpls.2023.1184556 DOI: https://doi.org/10.3389/fpls.2023.1184556
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Lean Leal Magalhães, Jennifer Souza Tomaz, Caroline de Souza Bezerra, Maria Teresa Gomes Lopes, Ricardo Lopes, Samuel Freitas de Souza, Carlos Henrique Salvino Gadelha Meneses, Ananda Virginia de Aguiar, Helinara Lais Vieira Capucho, Santiago Linorio Ferreyra Ramos

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.