Worldwide patterns of wild mammal trade are driven by species ecology, evolutionary relatedness, and socio-political variables: inferences from the TRAFFIC bulletin

Visualizações: 56

Authors

  • Hyago Soares Universidade Federal da Paraíba
  • Raynner Rilke Duarte Barboza Universidade Federal de Roraima
  • Anderson Feijó Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA
  • Diogo B Provete Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79002970, Mato Grosso do Sul, Brazil
  • Rômulo Romeu Nóbrega Alves Departamento de Biologia, Universidade Estadual da Paraíba, Bodocongó, Campina Grande, Paraíba, Brazil.

DOI:

https://doi.org/10.15451/ec2025-07-14.25-1-17

Abstract

Wildlife trade is one of the main drivers of species decline and extinction worldwide. Although many studies have investigated the magnitude and extent of the wildlife trade, little is known about the role that species traits play in the trade of species body parts and trade purposes. Here, we test how species traits, phylogenetic relationships, and socio-political variables determine the purpose of trade, number of body parts, species, and specimens traded. We compiled records of mammal trade from the TRAFFIC bulletin (n = 100 bulletins). We fitted Bayesian generalized linear models (GLMs) to test whether species traits influence the number of body parts, purpose of trade, and number of TRAFFIC bulletins per species. We fitted GLMs to test whether socio-political variables influence the number of trade records, species and specimens traded by country. Products of at least 16,279,031 specimens from 458 mammal species were traded, including 162 threatened species (65 vulnerable, 70 endangered, and 27 critically endangered) and two extinct species. Larger and “vulnerable” species are more likely to have more parts traded for more uses, and closely related species tend to be traded for similar purposes. In addition, 127 countries were associated with trade, with high-income countries (those with greater human development index) having a greater number of species traded. Our results highlight the importance of species traits and socio-political factors on mammal trades. We emphasize the need for multidisciplinary research to investigate the species loss due to trade based on species traits and socio-political factors.

Downloads

Download data is not yet available.

References

Abellán P, Carrete M, Anadón JD, Cardador L, Tella JL (2016) Non-random patterns and temporal trends (1912-2012) in the transport, introduction and establishment of exotic birds in Spain and Portugal. Diversity and Distributions 22:263–273. DOI: https://doi.org/10.1111/ddi.12403

Alves RRN, Borges AKM, Barboza RRD, Souto WMS, Goncalves-Souza T, Provete DB, Albuquerque UP (2020) A global analysis of ecological and

evolutionary drivers of the use of wild mammals in traditional medicine. Mammal Review 1–14.

Alves RRN, Rosa IL (2006) From cnidarians to mammals: The use of animals as remedies in fishing communities in NE Brazil. Journal of DOI: https://doi.org/10.1016/j.jep.2006.03.007

Ethnopharmacology 107:259 - 276.

Antunes AP, Fewster RM, Venticinque EM, Peres CA, Levi T, Rohe F, Shepard GH (2016) Empty forest or empty rivers? A century of commercial hunting in Amazonia. Science Advances 2: DOI: https://doi.org/10.1126/sciadv.1600936

Berec M, Vršecká L, Šetlíková I (2018) What is the reality of wildlife trade volume? CITES Trade Database limitations. Biological Conservation 224:111–116 DOI: https://doi.org/10.1016/j.biocon.2018.05.025

Borgelt J, Dorber M, Høiberg MA, Verones F (2022) More than half of data deficient species predicted to be threatened by extinction. Communications Biology 5:1–9 DOI: https://doi.org/10.1038/s42003-022-03638-9

Burgin CJ, Colella JP, Kahn PL, Upham NS (2018) How many species of mammals are there? Journal of Mammalogy 99:1–14 DOI: https://doi.org/10.1093/jmammal/gyx147

Bush ER, Baker SE, Macdonald DW (2014) Global trade in exotic pets 2006-2012. Conservation Biology 28:663–676 DOI: https://doi.org/10.1111/cobi.12240

Challender DWS, Brockington D, Hinsley A, Hoffmann M, Kolby JE, Massé F, Natusch DJD, Oldfield TEE, Outhwaite W, ’t Sas-Rolfes M, Milner-Gulland EJ (2022) Mischaracterizing wildlife trade and its impacts may mislead policy processes. Conservation Letters 15:1–10 DOI: https://doi.org/10.1111/conl.12832

Challender DWS, Harrop SR, MacMillan DC (2015) Understanding markets to conserve trade-threatened species in CITES. Biological Conservation 187:249–259 DOI: https://doi.org/10.1016/j.biocon.2015.04.015

Chen F (2016) Poachers and Snobs: Demand for Rarity and the Effects of Antipoaching Policies. Conservation Letters 9:65–69 DOI: https://doi.org/10.1111/conl.12181

Coals P, Moorhouse TP, D’Cruze NC, Macdonald DW, Loveridge AJ (2020) Preferences for lion and tiger bone wines amongst the urban public in China and Vietnam. Journal for Nature Conservation 57:125874 DOI: https://doi.org/10.1016/j.jnc.2020.125874

Faurby S, Davis M, Pedersen R, Schowanek SD, Antonelli A, Svenning JC (2018) PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99:2626 DOI: https://doi.org/10.1002/ecy.2443

Feng Y, Siu K, Wang N, Ng KM, Tsao SW, Nagamatsu T, Tong Y (2009) Bear bile: Dilemma of traditional medicinal use and animal protection. Journal of Ethnobiology and Ethnomedicine 5:1–9 DOI: https://doi.org/10.1186/1746-4269-5-2

Graham-Rowe D (2011) Endangered and in demand. Nature 480:8–10 DOI: https://doi.org/10.1038/nmat3062

Guedes JJM, Moura MR, Alexandre F. Diniz-Filho J (2023) Species out of sight: elucidating the determinants of research effort in global reptiles. Ecography 2023:1–14 DOI: https://doi.org/10.1111/ecog.06491

Harfoot M, Glaser SAM, Tittensor DP, Britten GL, McLardy C, Malsch K, Burgess ND (2018) Unveiling the patterns and trends in 40 years of global trade in CITES-listed wildlife. Biological Conservation 223:47–57 DOI: https://doi.org/10.1016/j.biocon.2018.04.017

Hartig F (2022) DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/ Mixed) Regression Models. R package version 0.4.6. https://CRAN.R-project.org/package=DHARMa

Hughes AC (2021) Wildlife trade. Current Anthropology 11:e02742 DOI: https://doi.org/10.1016/j.cub.2021.08.056

Hughes LJ, Massam MR, Morton O, Edwards FA, Scheffers BR, Edwards DP (2023) Global hotspots of traded phylogenetic and functional diversity. Nature 620:351–357 DOI: https://doi.org/10.1038/s41586-023-06371-3

Hughes LJ, Morton O, Scheffers BR, Edwards DP (2022) The ecological drivers and consequences of wildlife trade. Biological Reviews DOI: https://doi.org/10.1111/brv.12929

Jackson A, Edwards DP, Morton O (2023) National spatial and temporal patterns of the global wildlife trade. Global Ecology and Conservation 48:e02742 DOI: https://doi.org/10.1016/j.gecco.2023.e02742

Johnson PJ, Kansky R, Loveridge AJ, Macdonald DW (2010) Size, rarity and charisma: Valuing African wildlife trophies. PLoS ONE 5:1–7 DOI: https://doi.org/10.1371/journal.pone.0012866

Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648–2648 DOI: https://doi.org/10.1890/08-1494.1

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463-1464. DOI: https://doi.org/10.1093/bioinformatics/btq166

Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486:109–112 DOI: https://doi.org/10.1038/nature11145

Liew JH, Kho ZY, Lim RBH, Dingle C, Bonebrake TC, Sung YH, Dudgeon D (2021) International socioeconomic inequality drives trade patterns in the global wildlife market. Science Advances 7:1–12 DOI: https://doi.org/10.1126/sciadv.abf7679

Margulies JD, Bullough LA, Hinsley A, Ingram DJ, Cowell C, Goettsch B, Klitgård BB, Lavorgna A, Sinovas P, Phelps J (2019) Illegal wildlife trade and the persistence of “plant blindness”. Plants People Planet 1:173–182 DOI: https://doi.org/10.1002/ppp3.10053

Morais AR, Siqueira MN, Lemes P, Maciel NM, De Marco P, Brito D (2013) Unraveling the conservation status of data deficient species. Biological Conservation 166:98–102 DOI: https://doi.org/10.1016/j.biocon.2013.06.010

Morton O, Scheffers BR, Haugaasen T, Edwards DP (2021) Impacts of wildlife trade on terrestrial biodiversity. Nature Ecology and Evolution 5:540–548 DOI: https://doi.org/10.1038/s41559-021-01399-y

Morton O, Scheffers BR, Haugaasen T, Edwards DP (2022) Mixed protection of threatened species traded under CITES. Current Biology 32:999-1009.e9 DOI: https://doi.org/10.1016/j.cub.2022.01.011

Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2018) caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1. https://CRAN.R-project.org/package=caper

Palazy L, Bonenfant C, Gaillard JM, Courchamp F (2012) Rarity, trophy hunting and ungulates. Animal Conservation 15:4–11 DOI: https://doi.org/10.1111/j.1469-1795.2011.00476.x

Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526-528. DOI: https://doi.org/10.1093/bioinformatics/bty633

Paudel K, Hinsley A, Veríssimo D, Milner-Gulland E (2022) Evaluating the reliability of media reports for gathering information about illegal wildlife trade seizures. PeerJ 10:1–18 DOI: https://doi.org/10.7717/peerj.13156

Phelps J, Biggs D, Webb EL (2016) Tools and terms for understanding illegal wildlife trade. Frontiers in Ecology and the Environment 14:479–489 DOI: https://doi.org/10.1002/fee.1325

Prescott GW, Johnson PJ, Loveridge AJ, Macdonald DW (2012) Does change in IUCN status affect demand for African bovid trophies? Animal Conservation 15:248–252 DOI: https://doi.org/10.1111/j.1469-1795.2011.00506.x

R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Redding DW, Hartmann k, Mimoto A, Bokal D, Devos M, Mooers AO (2008) Evolutionary distinctive species often capture more phylogenetic diversity than expected. J. Theor. Biol 251: 606-615 DOI: https://doi.org/10.1016/j.jtbi.2007.12.006

Redford KH (1992) The Empty Forest. BioScience 42:412–422 DOI: https://doi.org/10.2307/1311860

Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1:319–329 DOI: https://doi.org/10.1111/j.2041-210X.2010.00044.x

Ribeiro J, Bingre P, Strubbe D, Santana J, Capinha C, Araújo MB (2022) Exploring the Effects of Geopolitical Shifts on Global Wildlife Trade. BioScience 72:560–572 DOI: https://doi.org/10.1093/biosci/biac015

Rivalan P, Delmas V, Angulo E, Bull LS, Hall RJ, Courchamp F (2007) Can bans stimulates wildlife trade? Nature 447:529–530 DOI: https://doi.org/10.1038/447529a

Rodrigues ASL, Pilgrim JD, Lamoreux JF, Hoffmann M, Brooks TM (2006) The value of the IUCN Red List for conservation. Trends in Ecology and Evolution 21:71–76 DOI: https://doi.org/10.1016/j.tree.2005.10.010

Rosen GE, Smith KF (2010) Summarizing the evidence on the international trade in illegal wildlife. EcoHealth 7:24–32 DOI: https://doi.org/10.1007/s10393-010-0317-y

Saif S, Russell AM, Nodie SI, Inskip C, Lahann P, Barlow A, Barlow CG, Islam A, MacMillan DC (2016) Local Usage of Tiger Parts and Its Role in Tiger Killing in the Bangladesh Sundarbans. Human Dimensions of Wildlife 21:95–110 DOI: https://doi.org/10.1080/10871209.2015.1107786

Sas-rolfes M, Challender DWS, Hinsley A, Veríssimo D, Milner-Gulland EJ (2019) Illegal Wildlife Trade : Patterns , Processes , and Governance. Annual Review of Environment and Resources 44:1–28 DOI: https://doi.org/10.1146/annurev-environ-101718-033253

Scheffers BR, Oliveira BF, Lamb I, Edwards DP (2019) Global wildlife trade across the tree of life. Science 366:71–76 DOI: https://doi.org/10.1126/science.aav5327

Smith KF, Behrens M, Schloegel LM, Marano N, Burgiel S, Daszak P (2009) Reducing the risks of the wildlife trade. Science 324:594–595 DOI: https://doi.org/10.1126/science.1174460

Soewu DA, Ayodele IA (2009) Utilisation of pangolin (Manis sps) in traditional Yorubic medicine in Ijebu province, Ogun State, Nigeria. Journal of Ethnobiology and Ethnomedicine 5:1–11 DOI: https://doi.org/10.1186/1746-4269-5-39

Su S, Cassey P, Vall-Llosera M, Blackburn TM (2015) Going cheap: Determinants of bird price in the Taiwanese pet market. PLoS ONE 10:1–17 DOI: https://doi.org/10.1371/journal.pone.0127482

Symes WS, Edwards DP, Miettinen J, Rheindt FE, Carrasco LR (2018a) Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nature Communications 9: DOI: https://doi.org/10.1038/s41467-018-06579-2

Symes WS, McGrath FL, Rao M, Carrasco LR (2018b) The gravity of wildlife trade. Biological Conservation 218:268–276 DOI: https://doi.org/10.1016/j.biocon.2017.11.007

Tanalgo KC, Sritongchuay T, Agduma AR, Dela Cruz KC, Hughes AC (2023) Are we hunting bats to extinction? Worldwide patterns of hunting risk in bats are driven by species ecology and regional economics. Biological Conservation 279:109944 DOI: https://doi.org/10.1016/j.biocon.2023.109944

Ullmann T, Veríssimo D, Challender DWS (2019) Evaluating the application of scale frequency to estimate the size of pangolin scale seizures. Global Ecology and Conservation 20:e00776 DOI: https://doi.org/10.1016/j.gecco.2019.e00776

Upham NS, Esselstyn JA, Jetz W (2019) Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biology 17: DOI: https://doi.org/10.1371/journal.pbio.3000494

Volpato G, Fontefrancesco MF, Gruppuso P, Zocchi DM, Pieroni A (2020) Baby pangolins on my plate: Possible lessons to learn from the COVID-19 pandemic. Journal of Ethnobiology and Ethnomedicine 16:1–12 DOI: https://doi.org/10.1186/s13002-020-00366-4

Wu T, Jia S, Fan G, Xu Z, Liu Y, Hu T (2025) Unraveling the non-linear associations between the international legal wildlife trade and biodiversity. Biological Conservation 304:111028 DOI: https://doi.org/10.1016/j.biocon.2025.111028

Zhu A, Zhu G (2020) Understanding China’s wildlife markets: Trade and tradition in an age of pandemic. World Development 136:105108 DOI: https://doi.org/10.1016/j.worlddev.2020.105108

Downloads

Published

07/02/2025

How to Cite

Soares, H. K. ., Barboza, R. R. D., Feijó, A., Provete, D. B., & Alves, R. R. N. (2025). Worldwide patterns of wild mammal trade are driven by species ecology, evolutionary relatedness, and socio-political variables: inferences from the TRAFFIC bulletin. Ethnobiology and Conservation, 14. https://doi.org/10.15451/ec2025-07-14.25-1-17

Issue

Section

Original research article