Comparison of local ecological knowledge versus camera trapping to establish terrestrial wildlife baselines in community hunting territories within the Yangambi landscape in the Democratic Republic of Congo
Visualizações: 776DOI:
https://doi.org/10.15451/ec2023-09-12.19-1-14Palavras-chave:
Wildlife surveys, community occupancy, Africa, Local Knowledge, Camera traps, tropical forestsResumo
Baseline population data are fundamental to the development of wildlife management plans and are usually generated based on field surveys using sampling tools such as camera traps (CT). However, this method can be costly and ineffective with rare species or in wildlife-depleted areas. An alternative is to complement baseline wildlife population data with Local Ecological Knowledge (LEK)-based methods. We compared LEK and CT surveys in terms of their capacity to assess the status of terrestrial mammal species (richness, abundance, distribution) in the Yangambi landscape of the Democratic Republic of Congo. This region is heavily hunted and wildlife population densities are low. Species not captured by CT included naturally rare and endangered species that were instead recorded by interviewed hunters. LEK and CT abundance metrics were positively related for all species. For all medium- and large-sized species, the number of positive sites from LEK outnumbered the number of positive sites from the CT survey, indicating that hunters detected species over larger areas. Overall, our comparison suggests that LEK and CT methods can be used interchangeably to provide reliable information on relative abundance. Nevertheless, LEK appears as a more cost- effective alternative to camera trapping, particularly for hunted and depleted tropical forests.
Downloads
Referências
Benchimol M, von Mühlen EM, Venticinque EM (2017) Lessons from a community-based program to monitor forest vertebrates in the Brazilian Amazon. Environmental Management 60:476–483 DOI: https://doi.org/10.1007/s00267-017-0888-2
Braga‐Pereira F, Morcatty TQ, El Bizri HR, Tavares AS, Mere‐Roncal C, González‐Crespo C, Bertsch C, Rodriguez CR, Bardales‐Alvites C, von Mühlen EM, Bernárdez‐Rodríguez GF, Paim FP, Tamayo JS, Valsecchi J, Gonçalves J, Torres‐Oyarce L, Lemos LP, Vieira MAR, Bowler M, Gilmore MP, Perez NCA, Alves RR, Peres CA, Pérez‐Peña P, Mayor P (2022) Congruence of local ecological knowledge (LEK)‐based methods and line‐transect surveys in estimating wildlife abundance in tropical forests. Methods in Ecology and Evolution 13:743–756 DOI: https://doi.org/10.1111/2041-210X.13773
Braga-Pereira F, Peres CA, Campos-Silva JV, Santos CV-D, Alves RRN (2020) Warfare-induced mammal population declines in Southwestern Africa are mediated by species life history, habitat type and hunter preferences. Scientific Reports 10:15428 DOI: https://doi.org/10.1038/s41598-020-71501-0
Brittain S, Ngo Bata M, De Ornellas P, Milner-Gulland EJ, Rowcliffe M (2018) Combining local knowledge and occupancy analysis for a rapid assessment of the forest elephant Loxodonta cyclotis in Cameroon’s timber production forests. Oryx 54:90–100 DOI: https://doi.org/10.1017/S0030605317001569
Brittain S, Rowcliffe MJ, Kentatchime F, Tudge SJ, Kamogne‐Tagne CT, Milner‐Gulland EJ (2022) Comparing interview methods with camera trap data to inform occupancy models of hunted mammals in forest habitats. Conservation Science and Practice 4:1–15 DOI: https://doi.org/10.1111/csp2.12637
Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S (2015) REVIEW: wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52:675–685 DOI: https://doi.org/10.1111/1365-2664.12432
Burton AC, Sam MK, Balangtaa C, Brashares JS (2012) Hierarchical multi-Species modeling of carnivore responses to hunting, habitat and prey in a west African protected area. PLoS ONE 7:e38007 DOI: https://doi.org/10.1371/journal.pone.0038007
Camino M, Thompson J, Andrade L, Cortez S, Matteucci SD, Altrichter M (2020) Using local ecological knowledge to improve large terrestrial mammal surveys, build local capacity and increase conservation opportunities. Biological Conservation 244:108450 DOI: https://doi.org/10.1016/j.biocon.2020.108450
Carvalho WD, Rosalino LM, Adania CH, Esbérard CEL (2016) Mammal inventories in seasonal Neotropical forests: traditional approaches still compensate drawbacks of modern technologies. Iheringia, Série Zoologia 106: DOI: https://doi.org/10.1590/1678-4766e2016005
Clare J, McKinney ST, DePue JE, Loftin CS (2017) Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance. Ecological Applications 27:2031–2047 DOI: https://doi.org/10.1002/eap.1587
Coomes OT, Takasaki Y, Abizaid C (2020) Impoverishment of local wild resources in western Amazonia: a large-scale community survey of local ecological knowledge. Environmental Research Letters 15:074016 DOI: https://doi.org/10.1088/1748-9326/ab83ad
Dorazio RM, Royle JA, Söderström B, Glimskär A (2006) Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87:842–854 DOI: https://doi.org/10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2
Fopa GD, Simo F, Kekeunou S, Ichu IG, Ingram DJ, Olson D (2020) Understanding Local Ecological Knowledge, ethnozoology, and public opinion to improve pangolin conservation in the center and east regions of Cameroon. Journal of Ethnobiology 40:234–251 DOI: https://doi.org/10.2993/0278-0771-40.2.234
Fragoso JM V, Levi T, Oliveira LFB, Luzar JB, Overman H, Read JM, Silvius KM (2016) Line transect surveys underdetect terrestrial mammals: implications for the sustainability of subsistence hunting. PLOS ONE 11:e0152659 DOI: https://doi.org/10.1371/journal.pone.0152659
Gandiwa E (2012) Local knowledge and perceptions of animal population abundances by communities adjacent to the Northern Gonarezhou National Park, Zimbabwe. Tropical Conservation Science 5:255–269 DOI: https://doi.org/10.1177/194008291200500303
Gaubert P, Papeş M, Peterson AT (2006) Natural history collections and the conservation of poorly known taxa: ecological niche modeling in central African rainforest genets (Genetta spp.). Biological Conservation 130:106–117 DOI: https://doi.org/10.1016/j.biocon.2005.12.006
Gelman A, Rubin DB (1992) A single series from the gibbs sampler provides a false sense of security. In: Bernardo JM, Berger J, Dawid AP, Smith AFM (eds) Bayesian Statistics 4. Oxford University Press, Oxford, pp. 627–633
Hansen MC, Potapov P V, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman S V, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853 DOI: https://doi.org/10.1126/science.1244693
IUCN. 2023. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org.
Jacobsen C, Fosgaard TR, Pascual-Ezama D (2018) Why do we lie? A practical guide to the dishonesty literature. Journal of Economic Surveys 32:357–387 DOI: https://doi.org/10.1111/joes.12204
Kays R, Arbogast BS, Baker‐Whatton M, Beirne C, Boone HM, Bowler M, Burneo SF, Cove M V, Ding P, Espinosa S, Gonçalves ALS, Hansen CP, Jansen PA, Kolowski JM, Knowles TW, Lima MGM, Millspaugh J, McShea WJ, Pacifici K, Parsons AW, Pease BS, Rovero F, Santos F, Schuttler SG, Sheil D, Si X, Snider M, Spironello WR (2020) An empirical evaluation of camera trap study design: how many, how long and when? Methods in Ecology and Evolution 11:700–713 DOI: https://doi.org/10.1111/2041-210X.13370
Kingdon J (2014) Mammals of Africa: Volume VI: Hippopotamuses, Pigs, Deer, Giraffe and Bovids. Bloomsbury Publishing,
Kingdon J, Hoffmann M (2013) Mammals of Africa. Volume V: carnivores, pangolins, equids and rhinoceroses. Bloomsbury Publishing,
Kolowski JM, Forrester TD (2017) Camera trap placement and the potential for bias due to trails and other features. PLOS ONE 12:e0186679 DOI: https://doi.org/10.1371/journal.pone.0186679
Kyale Koy, J., Wardell, D. A., Mikwa, J. F., Kabuanga, J. M., Monga Ngonga, A. M., Oszwald, J., & Doumenge, C. (2019). Dynamique de la déforestation dans la Réserve de biosphère de Yangambi (République démocratique du Congo): variabilité spatiale et temporelle au cours des 30 dernières années. Bois et Forêts des Tropiques, 341 : pp. 15-28. DOI: https://doi.org/10.19182/bft2019.341.a31752
Larrucea ES, Brussard PF, Jaeger MM, Barrett RH (2007) Cameras, coyotes, and the assumption of equal detectability. Journal of Wildlife Management 71:1682–1689 DOI: https://doi.org/10.2193/2006-407
Leggett CG, Kleckner NS, Boyle KJ, Dufield JW, Mitchell RC (2003) Social desirability bias in contingent valuation surveys administered through in-person interviews. Land Economics 79:561–575 DOI: https://doi.org/10.2307/3147300
MacKenzie DI and Nichols JD (2004) Occupancy as a surrogate for abundance estimation. Animal Biodiversity and Conservation 27.1:461–467
MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, London
Madsen EK, Elliot NB, Mjingo EE, Masenga EH, Jackson CR, May RF, Røskaft E, Broekhuis F (2020) Evaluating the use of local ecological knowledge (LEK) in determining habitat preference and occurrence of multiple large carnivores. Ecological Indicators 118:106737 DOI: https://doi.org/10.1016/j.ecolind.2020.106737
Martínez-Martí C, Jiménez-Franco M V, Royle JA, Palazón JA, Calvo JF (2016) Integrating occurrence and detectability patterns based on interview data: a case study for threatened mammals in Equatorial Guinea. Scientific Reports 6:33838 DOI: https://doi.org/10.1038/srep33838
McKelvey KS, Aubry KB, Schwartz MK (2008) Using anecdotal occurrence data for rare or elusive species: the illusion of reality and a call for evidentiary standards. BioScience 58:549–555 DOI: https://doi.org/10.1641/B580611
MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255 DOI: https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
McPherson JM, Sammy J, Sheppard DJ, Mason JJ, Brichieri-Colombi TA, Moehrenschlager A (2016) Integrating traditional knowledge when it appears to conflict with conservation: lessons from the discovery and protection of sitatunga in Ghana. Ecology and Society 21:24 DOI: https://doi.org/10.5751/ES-08089-210124
Molinari-Jobin A, Kéry M, Marboutin E, Molinari P, Koren I, Fuxjäger C, Breitenmoser-Würsten C, Wölfl S, Fasel M, Kos I, Wölfl M, Breitenmoser U (2012) Monitoring in the presence of species misidentification: the case of the Eurasian lynx in the Alps. Animal Conservation 15:266–273 DOI: https://doi.org/10.1111/j.1469-1795.2011.00511.x
Parry L, Peres CA (2015) Evaluating the use of local ecological knowledge to monitor hunted tropical-forest wildlife over large spatial scales. Ecology and Society 20:15 DOI: https://doi.org/10.5751/ES-07601-200315
Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. 124
R Core Team (2017) R: A language and environment for statistical computing.
Rich LN, Miller DAW, Robinson HS, McNutt JW, Kelly MJ (2016) Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. Journal of Applied Ecology 53:1225–1235 DOI: https://doi.org/10.1111/1365-2664.12650
Rovero F, Kays R (2021) Camera trapping for conservation. In: Wich SA, Piel AK (eds) Conservation Technology. Oxford University Press, Oxford, UK, pp. 79–101 DOI: https://doi.org/10.1093/oso/9780198850243.003.0005
Rovero F, Spitale D (2016) Presence/absence and species inventory. In: Rovero F, Zimmermann F (eds) Camera trapping for wildlife research. Data in the wild series. Pelagic Publishing, Exeter, pp. 43–67
Rowcliffe JM, Cowlishaw G, Long J (2003) A model of human hunting impacts in multi-prey communities. Journal of Applied Ecology 40:872–889 DOI: https://doi.org/10.1046/j.1365-2664.2003.00841.x
Ruddle K, Davis A (2013) Local Ecological Knowledge (LEK) in interdisciplinary research and application: a critical review. Asian Fisheries Science 26:79–100 DOI: https://doi.org/10.33997/j.afs.2013.26.2.002
Su Y-S, Masana Y (2015) R package ‘R2jags’.
Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends in Ecology and Evolution 19:305–308 DOI: https://doi.org/10.1016/j.tree.2004.03.018
Thompson K-L, Lantz TC, Ban NC (2020) A review of Indigenous knowledge and participation in environmental monitoring. Ecology and Society 25:10 DOI: https://doi.org/10.5751/ES-11503-250210
Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation 11:169–178 DOI: https://doi.org/10.1111/j.1469-1795.2008.00169.x
Turvey ST, Trung CT, Quyet VD, Nhu H Van, Thoai D Van, Tuan VCA, Hoa DT, Kacha K, Sysomphone T, Wallate S, Hai CTT, Thanh N Van, Wilkinson NM (2015) Interview-based sighting histories can inform regional conservation prioritization for highly threatened cryptic species. Journal of Applied Ecology 52:422–433 DOI: https://doi.org/10.1111/1365-2664.12382
van der Hoeven CA, de Boer WF, Prins HHT (2004) Pooling local expert opinions for estimating mammal densities in tropical rainforests. Journal for Nature Conservation 12:193–204 DOI: https://doi.org/10.1016/j.jnc.2004.06.003
van Vliet N, Muhindo J, Kambale Nyumu J, Mushagalusa O, Nasi R (2018) Mammal depletion processes as evidenced from spatially explicit and temporal local ecological knowledge. Tropical Conservation Science 11:1–16 DOI: https://doi.org/10.1177/1940082918799494
van Vliet N, Muhindo J, Nyumu JK, Nasi R (2019) From the forest to the dish: a comprehensive study of the wildmeat value chain in Yangambi, Democratic Republic of Congo. Frontiers in Ecology and Evolution 7:132 DOI: https://doi.org/10.3389/fevo.2019.00132
van Vliet N, Quintero S, Nyumu J, Muhindo J, Cerutti P, Nasi R, Rovero, F. (2023). Status of terrestrial mammals within the Yangambi Landscape, Democratic Republic of Congo. Oryx June 7:1-12 DOI: https://doi.org/10.1017/S0030605322001569
van Vliet N, Schulte-Herbrüggen B, Muhindo J, Nebesse C, Gambalemoke S, Nasi R (2017) Trends in bushmeat trade in a postconflict forest town: implications for food security. Ecology and Society 22:35 DOI: https://doi.org/10.5751/ES-09780-220435
Wegge P, Pokheral CP, Jnawali SR (2004) Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Animal Conservation 7:251–256 DOI: https://doi.org/10.1017/S1367943004001441
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027 DOI: https://doi.org/10.1890/13-1917.1
Yasuoka H, Hirai M, Kamgaing TOW, Dzefack ZCB, Kamdoum EC, Bobo KS (2015) Changes in the composition of hunting catches in southeastern Cameroon: a promising approach for collaborative wildlife management between ecologists and local hunters. Ecology and Society 20:25 DOI: https://doi.org/10.5751/ES-08041-200425
Zayonc D, Coomes OT (2022) Who is the expert? Evaluating local ecological knowledge for assessing wildlife presence in the Peruvian Amazon. Conservation Science and Practice 4:1–14 DOI: https://doi.org/10.1111/csp2.600
Zipkin EF, Royle JA, Dawson DK, Bates S (2010) Multi-species occurrence models to evaluate the effects of conservation and management actions. Biological Conservation 143:479–484 DOI: https://doi.org/10.1016/j.biocon.2009.11.016
Downloads
- PDF (English) 581
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Nathalie van Vliet, Francesco Rovero, Jonas Muhindo, Jonas Nyumu, Emmanuela Mbangale, Sagesse Nziavake, Paolo Cerutti, Robert Nasi, Simon Quintero
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License. Declaração de direito autoral de teste.