Climate change will likely threaten areas of suitable habitats for the most relevant medicinal plants native to the Caatinga dry forest
Visualizações: 1767DOI:
https://doi.org/10.15451/ec2022-06-11.15-1-24Palabras clave:
Ecosystem services , Natural medicines , Northeastern Brazil , Seasonally dry tropical forests , Species distributionResumen
Disruption of ecosystem services associated with climate change may affect human well-being in different ways. Medicinal plants provide extremely relevant ecosystem services. Here, we tested the hypothesis that highly suitable habitats (i.e. suitability ≥ 0.8) for medicinal plants in Caatinga dry forest may be potentially contracted under scenarios of climate change, which are represented by different levels of increases in greenhouse gas emissions. We performed species distribution modelling to simulate the effects of climate change on the range of suitable habitats for medicinal plants native to the Caatinga dry forest. We selected the 10 most important plant species based on their high local importance as medicinal resources. We documented that climate change may distinctly affect areas of suitable habitats for medicinal plants in the Caatinga dry forest. Independent of the future climatic scenario projected to 2070, 60% of the studied species will likely experience reductions in their areas of highly suitable habitats, 30% will likely experience increases and 10% may not be affected. Specifically, suitable habitats will likely be reduced for Myracrodruon urundeuva, Erythrina velutina, Operculina hamiltonii, Cereus jamacaru, Bauhinia cheilantha, and Anadenanthera colubrina; increased for Amburana cearensis, Neocalyptrocalyx longifolium and Operculina macrocarpa; and may not be affected exclusively for Maytenus rigida in future scenarios of climate change. We alert that potential future contractions of highly suitable habitats for the most important medicinal plants may compromise ecosystem functions and the provisioning of relevant natural medicines, mainly to low-income communities, which predominate abundant in the Caatinga dry forest.
Descargas
Citas
Aguirre-Gutiérrez J, Kissling WD, Biesmeijer JC, De Vries MFW, Reemer M, Carvalheiro LG (2017) Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. Journal of Biogeography 44: 696-707. https://doi.org/10.1111/jbi.12937 DOI: https://doi.org/10.1111/jbi.12937
Albergaria ET, Oliveira AFM, Albuquerque UP (2020) The effect of water deficit stress on the composition of phenolic compounds in medicinal plants. South African Journal of Botany 131: 12-17. https://doi.org/10.1016/j.sajb.2020.02.002 DOI: https://doi.org/10.1016/j.sajb.2020.02.002
Albergaria ET, Oliveira AFM, Albuquerque UP (2021) Effect of rainfall and soil fertility on total phenol and tannin contents in Cenostigma microphyllum (Mart. ex G. Don) E. Gagnon & G.P. Lewis (Fabaceae). Acta Physiologiae Plantarum 43: 61. https://doi.org/10.1007/s11738-021-03234-0 DOI: https://doi.org/10.1007/s11738-021-03234-0
Albuquerque UP, Lucena RFP, Monteiro JM, Florentino ATN, Ramos MA, Almeida CFCBR (2006) Evaluating two quantitative ethnobotanical techniques. Ethnobotany Ressearch and Applications 4: 51–60. DOI: https://doi.org/10.17348/era.4.0.51-60
Albuquerque UP, Medeiros PM, Almeida ALS, Monteiro JM, Neto EMFL, Melo JG, Santos JP (2007) Medicinal plants of the Caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. Journal of Ethnopharmacology 114: 325-354. https://doi.org/10.1016/j.jep.2007.08.017 DOI: https://doi.org/10.1016/j.jep.2007.08.017
Albuquerque UP, Araújo TA, Ramos MA, Nascimento VT, Lucena RFO, Monteiro JM, Alencar NL, Araújo EL (2009) How ethnobotany can aid biodiversity conservation: reflections on investigations in the semi-arid region of NE Brazil. Biodiversity and Conservation 18: 127–150. https://doi.org/10.1007/s10531-008-9463-8 DOI: https://doi.org/10.1007/s10531-008-9463-8
Albuquerque UP, Araújo EL, Castro CC, Alves RRM (2017) People and natural resources in the Caatinga. In Silva JMC, Leal IR, Tabarelli M (Eds) Caatinga – The largest tropical dry forest region in South America. Springer, Cham. 303-334. DOI: https://doi.org/10.1007/978-3-319-68339-3_11
Albuquerque UP, Patil U, Máthé A (2018) Medicinal and aromatic plants of South America. Vol. 5. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-024-1552-0
Albuquerque UP, Medeiros PM, Ferreira Júnior WS, Silva TC, Silva RRV, Gonçalves-Souza T (2019) Social-Ecological Theory of Maximization: Basic Concepts and Two Initial Models. Biological Theory 14: 73–85. https://doi.org/10.1007/s13752-019-00316-8 DOI: https://doi.org/10.1007/s13752-019-00316-8
Allouche O, Tsoar A, Kadmin R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x DOI: https://doi.org/10.1111/j.1365-2664.2006.01214.x
Andrade EM, Aquino DN, Chaves LCG, Lopes FB (2017) Water as capital and its uses in the Caatinga. In Silva, J.M.C., Leal, I.R., Tabarelli, M. (eds) Caatinga - The largest tropical dry forest region in South America. Springer, Cham. 281–302. DOI: https://doi.org/10.1007/978-3-319-68339-3_10
Applequist WL, Brinckmann JA, Cunningham AB, Hart R, Heinrich M, Katerere DR, van Andel T (2020) Scientistsʼ Warning on Climate Change and Medicinal Plants. Planta Medica 86: 10-18. https://doi.org/10.1055/a-1041-3406 DOI: https://doi.org/10.1055/a-1041-3406
Asase A, Peterson AT (2019) Predicted impacts of global climate change on the geographic distribution of an invaluable African medicinal plant resource, Alstonia boonei De Wild. Journal of Applied Research on Medicinal and Aromatic Plants 14: 100206. https://doi.org/10.1016/j.jarmap.2019.100206 DOI: https://doi.org/10.1016/j.jarmap.2019.100206
Augustino S, Gillah PR (2005) Medicinal plants in urban districts of Tanzania: plants, gender roles and sustainable use. International Forestry Review 7 (1): 44-58. https://doi.org/10.1505/ifor.7.1.44.64157 DOI: https://doi.org/10.1505/ifor.7.1.44.64157
Balick MJ, Cox PA (1997) Plants, people and culture. Scientific American Library, New York.
Barbet‐Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo‐absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327-338. DOI: https://doi.org/10.1111/j.2041-210X.2011.00172.x
Barral EC (2018) Biologia reprodutiva, ecologia de populações e filogeografia de Amburana cearenses, Leguminosae ameaçada de extinção. Universidade Federal de Pernambuco. Thesis. 128 p.
Bennett BC, Prance GT (2000) Introduced plants in the indigenous pharmacopoeia o northern South America. Economic Botany 54 (1): 90-102. DOI: https://doi.org/10.1007/BF02866603
Borges LA (2010) Biologia reprodutiva de espécies lenhosas de Leguminosae na Caatinga. Universidade Federal de Pernambuco. Thesis. 105p.
Borges CV, Minatel IO, Gomez-Gomez HA, Lima GPP (2017a) Medicinal plants: influence of environmental factors on the content of secondary metabolites. In Ghorbanpour M, Varma A (Eds) Medicinal Plants and Environmental. Springer, Cham. 259-277. DOI: https://doi.org/10.1007/978-3-319-68717-9_15
Borges LA, Machado IC, Lopes AV (2017b) Bee pollination and evidence of substitutive nectary in Anadenanthera colurbina (Leguminose-Mimosoideae). Arthropod-Plant Interactions 11: 263-271. DOI: https://doi.org/10.1007/s11829-017-9514-8
Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Hansen AS, Hilbert DW, Loehle C, Margules C, New M, Sobel Mj, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57: 227–236. DOI: https://doi.org/10.1641/B570306
Bustamante-Becerra JA, Carvalho S, Ometto JP (2014) Influence of the rainfall seasonal variability in the Caatinga vegetation of NE Brazil by the use of time-series. Journal of Hyperspectral Remote Sensing 4 (3): 31-44. DOI: https://doi.org/10.29150/jhrs.v4.1.p31-44
Cai I S, Foujols MA, Gardoll S, Gastineau G Ghattas J, Grandpeix JY, Guenet B, W, McPhaden MJ, Grimm AM, Rodrigues RR, Taschetto AS, Garreaud RD, Dewitte B, Poveda G, Ham YG, Santoso A, Ng B, Anderson W, Wang G, Geng T, Jo HS, Marengo JA, Alves LM, Osman M, Li S, Wu L, Karamperidou C, Takahashi K, Vera C (2020) Climate impacts of the El Niño – Soutern Oscillation on South America. Nature Reviews Earth & Enviroment 1: 215-231. https://doi.org/10.1038/s43017-020-0040-3 DOI: https://doi.org/10.1038/s43017-020-0040-3
Cardoso DBOS, Queiroz LP (2007) Diversidade de Leguminosae nas Caatingas de Tucano, Bahia: implicações para a fitogeografia do semi-árido do Nordeste do Brasil. Rodriguesia 58 2: 379-391. DOI: https://doi.org/10.1590/2175-7860200758212
Carvalho PER (2003) Espécies arbóreas brasileiras. Embrapa Informação tecnológica, Brasília. 1039 p.
Carvalho PER (2008) Espécies arbóreas brasileiras. Embrapa Informação tecnológica, Brasília. 593 p.
Centeno-Alvarado D, Silva, JSS, Cruz-Neto O, Lopes AV (2022) Climate change may reduce suitable habitats for Tacinga palmadora (Cactaceae0 in the Caatinga dry forest: species distribution modeling considering plant-pollinator interactions. Regional Environmental Change 22: 16. https://doi.org/10.107/s10113-021-01873-0 DOI: https://doi.org/10.1007/s10113-021-01873-0
Chaturvedi RK, Raghubanshi AS (2018) Soil water availability influences major ecosystem processes in tropical dry forests. International Journal of Hydrology 2 (1): 00042. https://doi.org/10.15406/ijh.2018.02.00042 DOI: https://doi.org/10.15406/ijh.2018.02.00042
Costa WF, Ribeiro M, Saraiva AM, Imperatriz-Fonseca VL, Giannini TC (2018) Bat diversity in the Carajás National Forest (Eastern Amazon) and potential impacts on ecosystem services under climate change. Biological Conservation 218: 200-210. https://doi.org/10.1016/j.biocon.2017.12.034 DOI: https://doi.org/10.1016/j.biocon.2017.12.034
Cavalcante AMB, Duarte AS, Ometto JPHB (2020) Modelling the potential distribution of Epiphyllum phyllanthus (L.) Haw. under future climate scenarios in the Caatinga biome. Anais da Academia Brasileira de Ciências 92(2): e20180836. https://doi.org/10.1590/0001-3765202020180836 DOI: https://doi.org/10.1590/0001-3765202020180836
D‘Amen M, Dubuis A, Fernandes RF, Pottier J, Pellisier L, Guisan A (2015) Using species richness and functional traits prediction to constrain assemblage prediction from stacked species distribution models. Journal of Biogeography 42 (7): 1255-1266. https://doi.org/10.1111/jbi.12485 DOI: https://doi.org/10.1111/jbi.12485
De Marco P, Nóbrega CC (2018) Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS One 0202403. https://doi.org/10.1371/journal.pone.0202403 DOI: https://doi.org/10.1371/journal.pone.0202403
Duan R-Y, Kong, X-Q, Huang M-Y, Fan W-Y, Wang Z-G (2014) The predictive performance and stability of six species distribution models. PloS ONE 9 (11): e112764. https://doi.org/10.1371/journal.pone.0112764 DOI: https://doi.org/10.1371/journal.pone.0112764
Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat J-P, Guisan A (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distribution 17: 1122–1131. https://doi.org/10.1111/j.1472-4642.2011.00792.x. DOI: https://doi.org/10.1111/j.1472-4642.2011.00792.x
Drake JM, Randin C, Guisan A (2006) Modelling ecological niches with support vector machines. Journal of Applied Ecology 43: 424-432. https://doi.org/10.1111/j.1365-2664.2006.01141.x DOI: https://doi.org/10.1111/j.1365-2664.2006.01141.x
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x
Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, Steege H, Lopez-Gonzalez G, Mendonza AM, Brienen R, Feldpausch TR, Pitman N, Alonso A, van der Heiiden D, Peña-Claros M, Ahuite M, Alexiaides M, Dávila EA, Murakami AA, Arroyo L, Aulestia M, Balsley H, Barroso J, Boot R, Cano A, Moscoso VC, Comiskey JA, Cornejo F, Dallmeier F, Daly DC, Dávila N, Duivenvoorden JF, Montoya AJD, Erwin T, Di Fiore A, Fredericksen T, Fuentes A, Garcís-Villacorta R, Gonzales T, Andino JEG, Coronado ENH, Huamantupa-Chuquimaco I, Jimenéz REM, Killeen TJ, Malhi Y, Mendoza C, Mogollón H, Jørgensen PM, Montero JC, Mostacedo B, Nauray W, Neill D, Vargas PN, Palacios S, Cuenca WP, Camacho NCP, Peacock J, Phillips JF, Pickavance G, Quesada CA, Ramírez-Angulo H, Restrepo Z, Rodriguez CR, Paredes MR, Peñuela-Mora MC, Sierra R, Silveira M, Sterverson P, Stropp J, Terbogh J, Tirado M, Toledo M, Torres-Lezama A, Umanã MN, Urrego LE, Martinez RV, Gamarra LV, Vela CIA, Torre EV, Vos V, von Hildebrand P, Vriesendorp C, Wang O, Young KR, Zartman CE, Phillips OL (2016) Seasonal drought limits tree species across the Neotropics. Ecography 40 (5): 618-629. https://doi.org/10.1111/ecog.01904 DOI: https://doi.org/10.1111/ecog.01904
ESRI. ArcGIS Desktop, Release 10.9 (2019) Redlands, CA: Environmental Systems Research Institute.
Evangelista-Vale JC, Weihs M, José-Silva L, Arruda R, Sander NL, Gomides SC, Machado TM, Pires-Oliveira JC, Barros-Rosa L, Castuera-Oliveira L, Matias RAM, Martins-Oliveria AT, Bernardo CSS, Silva-Pereira I, Carnicer C, Carpanedo RS, Eisenlohr PV (2021) Climate change may affect the future of extractivism in the Brazilian Amazon. Biological Conservation 257: 109093. https://doi.org/10.1016/j.biocon.2021109093 DOI: https://doi.org/10.1016/j.biocon.2021.109093
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9: 1837-1958. https://doi.org/10.5194/gmd-9-1937-2016 DOI: https://doi.org/10.5194/gmd-9-1937-2016
Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon, DOI: https://doi.org/10.1016/B978-0-08-023160-0.50020-7
Oxford.
Fick SE, Hijmans RJ (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4301-4315. https://doi.org/10.1002/joc.5086 DOI: https://doi.org/10.1002/joc.5086
Firmo WCA, Menezes VJM, Passos CEC, Dias CN, Alves LPL, Dias ICL, Neto MS, Olea RSG (2011) Contexto histórico, uso popular e concepção científica sobre plantas medicinais. Cadernos de Pesquisa 18: 90–95
Fonseca MG, Aragão LEOC, Lima A, Shimabukuro YE, Arai E, Anderson LO (2015) Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire 25 (9): 955-969. https://doi.org/10.1071/WF15216 DOI: https://doi.org/10.1071/WF15216
Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in lowlands of Costa-Rica. Journal of Ecology 62: 881-919. DOI: https://doi.org/10.2307/2258961
Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L (2013) Modelling plant species distributions under future climates, how fine scale do climate projections need to be? Global Change Biology 19 (2): 473-483. https://doi.org/10.1111/gcb.12051 DOI: https://doi.org/10.1111/gcb.12051
Golicher DJ, Cayuela L, Newton AC (2012) Effects of climate change on the potential species richness of Mesoamerican forests. Biotropica 44 (3): 282-293. https://doi.org/10.1111/j.1744-7429.2011.00815.x DOI: https://doi.org/10.1111/j.1744-7429.2011.00815.x
Griz LMS, Machado ICS (2001) Fruiting phenology and seed dispersal syndromes in Caatinga, a tropical dry forest in the northeast of Brazil. Journal of Tropical Ecology 17: 303-321. DOI: https://doi.org/10.1017/S0266467401001201
Grunié M, Violle C, Munoz F (2020) Is prediction of species richness from stacked species distribution models biased by habitat saturation? Ecological Indicators 111: 105970. https://doi.org/10.1016/j.ecolind.2019.105970 DOI: https://doi.org/10.1016/j.ecolind.2019.105970
Gupta A, Singh PP, Singh P, Singh K, Singh AV, Singh S, Kumar A (2019) Medicinal plants under climate change: impacts on pharmaceutical properties of plants. In: Choudhary KK, Kumar A, Singh AK (Eds) Climate Change and Agricultural Ecosystems – Current Challenges and Adaptation. Woodhead Publishing/Elsevier. 181-208. DOI: https://doi.org/10.1016/B978-0-12-816483-9.00008-6
Hidasi-Neto J, Joner DC, Rsende F, Monteiro LM, Faleiro FV, Loyola RD, Cianciaruso MV (2019) Climate change will drive mammal species loss and biotic homogenization in the Cerrado Biodiversity Hotspot. Perspective in Ecology and Conservation 17 (2): 57-63. https://doi.org/10.1016/j.pecon.2019.02.001 DOI: https://doi.org/10.1016/j.pecon.2019.02.001
Houghton JT, Ding Y, Griggs DJ, Noguer M, Winden PJ, Dai X (2001) Climate Change 2001: The Scientific Basis. Contributions of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Hiltner, U., Bräuning, A., Gebrekirstos, A., Huth, A., Fischer, R., 2016. Impacts of precipitation variability on the dynamics of a dry tropical montane forest. Ecological Modelling 320: 92-101.https://doi.org/10.1016/j.ecolmodel.2015.09.021 DOI: https://doi.org/10.1016/j.ecolmodel.2015.09.021
Hultine KR, Grady KC, Wood TE, Shuster SM, Stella JC, Whitham TG (2016) Climate change perils for dioecious plant species. Nature Plants 109 (2). https://doi.org/10.1038/NPLANTS.2016.109 DOI: https://doi.org/10.1038/nplants.2016.109
IPBES (2016) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Potts SG, Imperatriz-Fonseca VL, Ngo HT (Eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 552 pages.
IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Jamloki A, Bhattacharyya M, Nautiyal MC, Patni B (2021). Elucidating the relevance of high temperature and elevated CO2 secondary metabolites (PSMs) production. Heliyon 7 (8): e07709. https://doi.org/10.1016/j.heiyon.2021.e07709 DOI: https://doi.org/10.1016/j.heliyon.2021.e07709
Kaky E, Gilbert F (2016) Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. Journal of Arid Environment 135: 140-146. https://doi.org/10.1016/j.jaridenv.2016.09.001 DOI: https://doi.org/10.1016/j.jaridenv.2016.09.001
Kaky E, Gilbert F (2017) Predicting distribution of Egypt´s medicinal plants and their potential shifts under future climate change. PloS ONE 12 (11): e0187714. https://doi.org/10.1371/journal.pone.0187714 DOI: https://doi.org/10.1371/journal.pone.0187714
Kang H, Bawa KS (2003) Effects of successional status, habitat, sexual systems, pollinators on flowering patterns in tropical rain forest trees. American Journal of Botany 90: 865-876. DOI: https://doi.org/10.3732/ajb.90.6.865
Khanum R, Mumtaz AS, Kumar S (2013) Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica 49: 23-31. https://doi.org/10.1016/j.actao.2013.02.007 DOI: https://doi.org/10.1016/j.actao.2013.02.007
Klein JA, Harte J, Zhao X-Q (2008) Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau. Ecosystems 11: 775-789. https://doi.org/10.1007/s10021-008-9160-1 DOI: https://doi.org/10.1007/s10021-008-9160-1
Kumar RS, Kala RH, Kumar GS, Kumar SK, Sailesh R (2017a) Predicting the impacts of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science 14 (3): 558-570. https://doi.org/10.1007/s11629-015-3822-1 DOI: https://doi.org/10.1007/s11629-015-3822-1
Kumar S, Yadav A, Yadav M, Yadav JP (2017b) Effects of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Research Notes 10:60. https://doi.org/10.1186/s13104-017-2385-3 DOI: https://doi.org/10.1186/s13104-017-2385-3
Khurana E, Singh JS (2001) Ecology of tree seed and seedlings: implications for tropical forest conservation and restoration. Current Science 80: 748–757.
Leal IR (2003) Dispersão de sementes por formigas na Caatinga. In: Leal IR, Tabarelli M, Silva JMC (Eds) Ecologia e Conservação da Caatinga. Editora Universitária – UFPE, Recife. 593-624.
Leite AV (2006) Sistema reprodutivo em plantas da Caatinga: Evidências de um padrão. Universidade Federal de Pernambuco. Thesis. 105 p.
Leite AV, Machado IC (2010) Reproductive biology of woody species in Caatinga, a dry forest of northeastern Brazil. Journal of Arid Environments 74: 1374-1380. https://doi.org/10.1016/j.jaridenv.2010.05.029 DOI: https://doi.org/10.1016/j.jaridenv.2010.05.029
Leite TS, Dias NS, Freitas RMO, Dombroski, JLD, Leite MS, Farias RM (2022) Ecophysiological and biochemical responses of two tree species from a tropical dry forest to drought stress and recovery. Journal of Arid Environments 200: 104720. https://doi.org/10.1016/j.jaridenv.2022.104720 DOI: https://doi.org/10.1016/j.jaridenv.2022.104720
Li J, Wu J, Peng K, Fan G, Yu H, Wang W, He Y (2019) Simulating the effects of climate change across the geographical distribution of two medicinal plants in the genus Nardostachys. PeerJ 7, e6730. https://doi.org/10.7717/perrj.6730 DOI: https://doi.org/10.7717/peerj.6730
Li Y, Li M, Li C, Liu Z (2020) Optimized MaxEnt model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolta in China. Forests 11: 302. https://doi.org/10.3390/f11030302 DOI: https://doi.org/10.3390/f11030302
Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393. https://doi.org/10. 1111/j.0906-7590.2005.03957.x DOI: https://doi.org/10.1111/j.0906-7590.2005.03957.x
Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California’s endemic flora. PLoS ONE 3(6): 2502. https://doi.org/10.1371/journal.pone.0002502 DOI: https://doi.org/10.1371/journal.pone.0002502
Machado IC, Lopes AV (2004) Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest. Annals of Botany 94: 365-376. https://doi.org/10.1093/aob/mch152 DOI: https://doi.org/10.1093/aob/mch152
Machado IC, Lopes AV, Sazima M (2006) Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest. Annals of Botany 97: 277-287. https://doi.org/10.1093/aob/mcj029 DOI: https://doi.org/10.1093/aob/mcj029
Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transaction of the Royal Society of London 365: 311-329. https://doi.org/10.1098/rstb.2003.1433 DOI: https://doi.org/10.1098/rstb.2003.1433
Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate changes, deforestation, and the Fate of the Amazon. Science 139: 169-172. https://doi.org/10.1126/science.1146961 DOI: https://doi.org/10.1126/science.1146961
Mansfield LA, Nowack PJ, Kasoar M, Everitt RG, Collins WJ, Voulgarakis A (2020) Predicting global patterns of long-term climate change from short-term simulations using machine learning. NPJ Climate and Atmospheric Science 3: 44. https://doi.org/10.1038/s41612-020-00148-5 DOI: https://doi.org/10.1038/s41612-020-00148-5
Marengo JA, Alves LM, Bezerra EA, Lacerda FF (2011) Variabilidade e mudanças climáticas no semiárido brasileiro. In Medeiros SS, Gheyi HR, Galvão CO, Paz VPS (Eds) Recursos hídricos em regiões áridas e semiáridas. Instituto Nacional do Semiárido, Campina Grande. 384-422.
Marengo JA, Torres RR, Alves LM (2017) Drought in Northeast Brazil – past, present and future. Theoretical and Applied Climatology 129: 1189-1200. https://doi.org/10.1007/s00704-016-1840-8 DOI: https://doi.org/10.1007/s00704-016-1840-8
Maitner BS, Boyle B, Casler N, Condit R, Donoghue II J, Durán SM, Guaderrama D, Hinchliff CE, Jørgensen PM, Kraft NJB, McGill B, Merrow C, Morueta-Holme N, Peet RK, Sandei B, Schildhauer M, Smith SA, Svenning J-C, Thiers B, Violle C, Wiser S, Enquist BJ (2018) The BIEN R package: A toll to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution 9: 373-379. https://doi.org/10.1111/2041-210X.12861 DOI: https://doi.org/10.1111/2041-210X.12861
Martins MV (2020) Erythrina in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/FB29679
Medeiros PM, Ladio AH, Albuquerque UP (2013) Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: A macroscale investigation based on available literature. Journal of Ethnopharmacology 150: 129-146. https://doi.org/10.1016/j.jep.2013.09.026 DOI: https://doi.org/10.1016/j.jep.2013.09.026
Meiado MV, Albuquerque LSC, Rocha EA, Rojas-Aréchigas M, leal IR. (2010) Seed germination responses of Cereus jamacaru DC. ssp. jamacaru (Cactaceae) to environmental factors. Plant Species Biology 25: 120-128. https://doi.org/10.1111/j.1442-1984.2010.00274.x DOI: https://doi.org/10.1111/j.1442-1984.2010.00274.x
Melo JG, Amorim ELC, Albuquerque UP (2009) Native medicinal plants commercialized in Brazil – priorities for conservation. Environmental Monitoring and Assessment 156: 56. https://doi.org/10.1007/s10661-008-0506-0 DOI: https://doi.org/10.1007/s10661-008-0506-0
Memmott J, Graze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecology Letters 10: 710-717. https://doi.org/10.1111/j.1461-0248.2007.01061.x DOI: https://doi.org/10.1111/j.1461-0248.2007.01061.x
Menéndez-Guerrero PA, Green DM, Davies J (2020) Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography 43: 222-235. https://doi.org/10.1111/ecog.04510 DOI: https://doi.org/10.1111/ecog.04510
Mooney H, Laragauderie A, Cesario M, Elmquist T, Hoeg-Guldberg O, Lavorel S, Mace GM, Palmer M, Scholes R, Yahara T (2009) Biodiversity, climate change and ecosystem services. Current Opinion in Environmental Sustainability 1: 46-54. https://doi.org/10.1016/j.cosust.2009.07.006 DOI: https://doi.org/10.1016/j.cosust.2009.07.006
Moro MF, Lughadha EN, Filer DL, Araújo FS, Martins FR (2014) A catalogue of the vascular plants of the Caatinga Phytogeographical Domain, a synthesis of floristic and phytosociological surveys. Phytotaxa 160 (1): 001-118. https://doi.org/10.11646/phytotaxa.160.1.1 DOI: https://doi.org/10.11646/phytotaxa.160.1.1
Moro MF, Silva IA, Araújo FS, Lughadha EN, Meagher TR, Martins FR (2015) The role of edaphic environment and climate in structuring phylogenetic pattern in Seasonally Dry Tropical plant communities. PloS ONE 10 (3): 0119166. https://doi.org/10.1590/2175-7860201566305 DOI: https://doi.org/10.1371/journal.pone.0119166
Munt DD, Muñoz-Rodríguez P, Marques I, Saiz JCM (2016) Effects of climate change on threatened Spanish medicinal and aromatic species: predicting future trends and defining conservation guidelines. Israel Journal of Plant Science 63: 309–319. http://dx.doi.org/10.1080/07929978.2016.1258257 DOI: https://doi.org/10.1080/07929978.2016.1258257
Myeya CN, Kimera SI, Stanley G, Misinzo G, Mboera LEG (2016) Climate change influences potential distribution of infected Aedes aegypti co-occurrence with dengue epidemic risk areas in Tanzania. Plos ONE 11 (9): e0162649. https://doi.org/ 10.1371/journal.pone.0162649 DOI: https://doi.org/10.1371/journal.pone.0162649
Nelson EJ, Kareiva P, Ruckelshaus M, Arkema K, Geller G, Girvetz E, Goodrich D, Matzek V, Pinsky M, Reid W, Saunders M, Semmens D, Tallis H (2013) Climate change’s impacts on key ecosystem services and the human well-being they support in the US. Frontiers in Ecology and Environment 11 (9): 483-493. https://doi.org/10.1890/120312 DOI: https://doi.org/10.1890/120312
Newstrom LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 26: 141–159. DOI: https://doi.org/10.2307/2388804
Nunes AT, Albuquerque UP (2018) South American biodiversity and its potential in medicinal and aromatic plants. In Albuquerque UP, Patil U, Máthé A (Eds) Medicinal and aromatic plants of South America. Springer. 3-15. DOI: https://doi.org/10.1007/978-94-024-1552-0_1
Oliveira G, Araújo MB, Rangel TF, Alagador D, Diniz-Filho JAF (2012) Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodiversity Conservation 21: 2913-2926. https://doi.org/10.1007/s10531-012-0346-7 DOI: https://doi.org/10.1007/s10531-012-0346-7
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography 27: 261–273. ttps://doi.org/10.1046/j.1365-2699.2000.00397.x DOI: https://doi.org/10.1046/j.1365-2699.2000.00397.x
Peres MK (2016) Estratégias de dispersão de sementes no Bioma Cerrado: Considerações ecológicas e filogenéticas. Universidade de Brasília. Thesis. 360 p.
Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416 (6881): 626–629. https://doi.org/10.1038/416626a DOI: https://doi.org/10.1038/416626a
Pijl van der L (1982) Principles of dispersal in higher plants. Springer-Verlag, New DOI: https://doi.org/10.1007/978-3-642-87925-8
York.
Pinedo-Escatel JA, Moya-Raygoza G, Dietrich CH, Zahniser JN, Portillo L (2021) Threatened Neotropical seasonally dry tropical forest: evidence of biodiversity loss in sap-sucking herbivores over 75 years. Royal Society Open Science 8: 201370. https://doi.org/10.1098/rsos.201370 DOI: https://doi.org/10.1098/rsos.201370
Pompermaier L, Marzocco S, Adesso S, Monizi M, Schwaiger S, Neinhuis C, Stuppner H, Lautenschläger T (2018) Medicinal plants of northern Angola and their anti-inflammatory properties. Journal of Ethnopharmacology 216: 26-36. https://doi.org/10.1016/j.jep.2018.01.019 DOI: https://doi.org/10.1016/j.jep.2018.01.019
Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 267: 347-350. DOI: https://doi.org/10.1126/science.269.5222.347
Prieto- Torres DA, Lira-Noriega A, Navarro-Sigüenza AG (2020 Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forest. Perspective in Ecology and Conservation 18 (1): 19-30. https://doi.org/10.1016/j.pecon.2020.01.002 DOI: https://doi.org/10.1016/j.pecon.2020.01.002
Quirino ZGM, Machado IC (2014) Pollination syndromes in a Caatinga plant community in northeastern Brazil: seasonal availability of floral resources in different plant growth habits. Brazilian Journal of Biology 74 (1): 62-71. https://doi.org/10.1590/1519-6984.17212 DOI: https://doi.org/10.1590/1519-6984.17212
R Core Team. R: A language and environment for statistical computing (2021) Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/
Rafiana I, Sukaya, Muliawati ES, Yuniastuti E (2021) The effects of parental plant and washing materials on seed germination of F2 generation apple cactus (Cereus sp). IOP Conference Series: Earth and Environmental Science 905: 012074. https://doi.org/10.1088/1755-1315/905/1/012074 DOI: https://doi.org/10.1088/1755-1315/905/1/012074
Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, KC S, Leimbatch M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefle J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The Shared Socioeconomic Pathways and theirs energy, land use, and greenhouse emissions implication: An overview. Global Environmental Change 42: 153-168. https://doi.org/10.1016/j.bloenvcha.2016.05.009 DOI: https://doi.org/10.1016/j.gloenvcha.2016.05.009
Ribeiro EKMD (2011) Fenologia e atributos reprodutivos de espécies ocorrentes em Restinga no Maranhão. Universidade Federal de Pernambuco. Thesis. 107 p.
Richards AJ (1997) Plant Breeding Systems. Chapman & Hall, Cambridge. DOI: https://doi.org/10.1007/978-1-4899-3043-9
Rocca MA, Sazima M (2010) Beyond hummingbird-flowers:the other side of ornithophily in the Neotropics. Oecologia Autralis 14 (1): 67-99. https://doi.org/10.4257/oeco.2010.1401.03Roy SK, Roy DK (2016) Use of medicinal plant and its vulnerability due to climate change in northern part of Bangladesh. American Journal of Plant Science 7: 1782-1793. https://doi.org/10.4236/ajps.2016.713166 DOI: https://doi.org/10.4257/oeco.2010.1401.03
Sahragard HP, Ajorlo M, Karami P (2018) Modeling habitat suitable of range plant species using random forest method in arid mountainous rangelands. Journal of Mountain Science 15 (10): 2159-2171. https://doi.org/10.1007/s11629-018-4898-1 DOI: https://doi.org/10.1007/s11629-018-4898-1
Salick J, Zhendong F, Byg A (2009) Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Global Environmental Change 19: 147-155. https://doi.org/10.1016/j.gloenvcha.2009.01.008 DOI: https://doi.org/10.1016/j.gloenvcha.2009.01.008
Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In Bullock SH, Mooney HA, Medina E (Eds) Seasonally Dry Tropical Forests. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511753398.003
Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD (2014) Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theoretical and Experimental Plant Physiology 13: 83–99. https://doi.org/10.1007/s40626-014-0008-0 DOI: https://doi.org/10.1007/s40626-014-0008-0
Santos MO, Almeida BV, Ribeiro DA, Macêdo DG, Macêdo MJF, Macedo JGF, de Sousa FFS, de Oliveira LGS, Saraiva ME, Araújo TMS, Souza MMA (2017) The conservation of native priority medicinal plants in a Caatinga area in Ceará, northeastern Brazil. Anais Academia Brasileira de Ciência 89 (4): 2675-2685. https://doi.org/10.1590/0001-3765201720160633 DOI: https://doi.org/10.1590/0001-3765201720160633
Scheffers BR, Meester LD, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SH, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate change from genes to biomes to people. Science 354 (6313): 719-732. https://doi.org/10.1126/science.aaf7671 DOI: https://doi.org/10.1126/science.aaf7671
Searcy CA, Shaffer HB (2016) Do ecological niche models accurately identify climatic determinants of species ranges? American Naturalist 187 (4): 423-435. https://doi.org/10.1086/685387 DOI: https://doi.org/10.1086/685387
Segura G, Balvanera P, Duran E, Perez-Jimenez A (2002) Tree Community structure and stem mortality along a water availability gradient in a Mexican tropical dry forest. Plant Ecology 169: 259-271. https://doi.org/10.1023/A:1026029122077 DOI: https://doi.org/10.1023/A:1026029122077
Sheldon KS (2019) Climate change in the tropics: ecological and evolutionary responses at low latitudes. Annals of Review 50: 303-333. https://doi.org/10.1146/annurev-ecolsys-110218-025005 DOI: https://doi.org/10.1146/annurev-ecolsys-110218-025005
Silva ACC, Prata APN, Mello AP, Santos ACAS (2013) Síndromes de dispersão de Angiospermas em uma Unidade de Conservação na Caatinga, SE, Brasil. Hoehnea 40 (4): 601-609. DOI: https://doi.org/10.1590/S2236-89062013000400003
Silva EEM, Paixão VHF, Torquato JL, Lunardi DG, Lunardi VO (2020) Fruiting phenology and consumption of zoochoric fruits by wild vertebrates in a seasonally dry tropical forest in the Brazilian Caatinga. Acta Oecologica 105: 103553. https://doi.org/10.1016/j.actao.2020.103553 DOI: https://doi.org/10.1016/j.actao.2020.103553
Silva JHCS, Azerêdo GA, Targino VA (2020) Resposta germinativa de sementes de cactáceas colunares sob diferentes regimes de temperatura e de potencial hídrico. Scientia Plena 16 (12): 123101-1. https://doi.org/10.14808/sci.plena.2020.123101 DOI: https://doi.org/10.14808/sci.plena.2020.123101
Silva JLS, Cruz-Neto O, Peres CA, Tabarelli M, Lopes AV (2019) Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies. PloS ONE 14 (5), e0217028. https://doi.org/10.1371/journal.pone.0217028 DOI: https://doi.org/10.1371/journal.pone.0217028
Silva JMC, Barbosa LCF, Leal IR, Tabarelli M (2017a) The Caatinga: understanding the challenges. In Silva JMC, Leal IR, Tabarelli M (Eds) Caatinga – The largest tropical dry forest region in South America. Springer, Cham. 3-22. DOI: https://doi.org/10.1007/978-3-319-68339-3_1
Silva JMC, Leal IR, Tabarelli M (2017b) Caatinga – The largest tropical dry forest region in South America. Springer, Cham.
Silva MC, Rodal MJN (2009) Padrões das síndromes de dispersão de plantas em áreas com diferentes graus de pluviosidade, PE, Brasil. Acta Botanica Brasilica 23 (4): 1040-1047. https://doi.org/10.1590/S0102-33062009000400014 DOI: https://doi.org/10.1590/S0102-33062009000400014
Siyum Z (2020) Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps and management perspectives. Ecological Processes 9: 25. https://doi.org/10.1186/s13717-020-00229-6 DOI: https://doi.org/10.1186/s13717-020-00229-6
Soares SM, Machado IC, Aguiar AV, Lopes AV (2014) Dioecy in the Caatinga, a Brazilian tropical dry forest: typical reproductive traits of a low frequent sexual system. Plant Systematics and Evolution 300: 1299-1311. https://doi.org/10.1007/s00606-013-0962-z DOI: https://doi.org/10.1007/s00606-013-0962-z
Staples GW, Simões AR, Austin DF (2020) A monograph of Operculina (Convolvulaceae). Annals of Missouri Botanical Garden 105: 64-138. https://doi.org/10.3417/2020435 DOI: https://doi.org/10.3417/2020435
Strykstra RJ, Bekker RM, Andel JV (2002) Dispersal and life span spectra in plant communities: a key to safe site dynamics, species coexistence and conservation. Ecography 25 (2): 145-160. https://doi.org/10.1034/j.1600-0587.2002.250203.x DOI: https://doi.org/10.1034/j.1600-0587.2002.250203.x
Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, von Salzen K, Yang D, Winter B (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geoscience Model Development 12: 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019 DOI: https://doi.org/10.5194/gmd-12-4823-2019
Taheri S, Naimi B, Rahbek C, Araújo MB (2021) Improvements in reports of species redistribution under climate change are required. Science Advances 7: eabe1110. https://doi.org/10.1126/sciadv.abe1110 DOI: https://doi.org/10.1126/sciadv.abe1110
Tangjitman K, Trisonthi C, Wongsawad C, Jitaree S, Svenning JC (2015) Potential impacts of climatic change on medicinal plants used in the Karen women’s health care in northern Thailand. Songklanakarin Journal of Science and Technology 37 (3): 369-379.
Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo K, Sekiguchi M, Abe M, Saito F, Chikira M, Watanabe S, Mori M, Hirota N, Kawatani Y, Mochizuki T, Yoshimura K, Takata K, O'ishi R, Yamazaki D, Suzuki T, Kurogi M, Kataoka T, Watanabe M, Kimoto M (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscience Model Development 12: 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019 DOI: https://doi.org/10.5194/gmd-12-2727-2019
Tylianaskis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystem. Ecology Letters 11: 1351-1363. http://dx.doi.org/10.1111/j.1461-0248.2008.01250.x DOI: https://doi.org/10.1111/j.1461-0248.2008.01250.x
Wakie TT, Evangelista PH, Jarnevich CS, Laituri M (2014) Mapping Current and Potential Distribution of Non-Native Prosopis juliflora in the Afar Region of Ethiopia. PLoS ONE 9 (11): e112854. http://dx.doi.org/10.1371/journal.pone.0112854 DOI: https://doi.org/10.1371/journal.pone.0112854
Wang R, Li Q, He S, Liu Y, Wang M, Jiang G (2018) Modelling and mapping the current and future distribution of Pseudomonas syringae pv. actinidae under climate change in China. Plos ONE 13 (2): e0192153. https://doi.org/10.1371/journal.pone.0192153 DOI: https://doi.org/10.1371/journal.pone.0192153
Wenny DG, Devault TL, Johnson MD, Kelly D, Sekercioglu CH, Tomback DF, Whelan CJ (2011) The need to quantifying ecosystem service provided by birds. Auk 128: 1-14. https://doi.org/10.1525/auk.2011.10248 DOI: https://doi.org/10.1525/auk.2011.10248
Wu T, Yu R, Lu Y, Jie W, Fang Y, Zhang J, Zhang L, Xin X, Li L, Wang Z, Liu Y, Zhang F, Wu F, Chu M, Li J, Li W, Zhang Y, Shi X, Zhou W, Yao J, Liu X, Zhao H, Yan J, Wei M, Xue W, Huang A, Zhang Y, Zhang Y, Shu Q, Hu A (2021) BCC-CSM2-HR: a high-resolution version of the Beijing Climate Center Climate System Model. Geoscience Model Development 14: 2977–3006. https://doi.org/10.5194/gmd-14-2977-2021 DOI: https://doi.org/10.5194/gmd-14-2977-2021
Zanina DN (2013) Quem poliniza Cereus jamacaru? Universidade Federal do Ceará. Dissertation. 40 p.
Zhao Q, Li R, Gao Y, Yao Q, Guo X, Wang W (2017) Modelling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 152 (3): 349-355. http://dx.doi.org/10.1080/11263504.2017.1289273 DOI: https://doi.org/10.1080/11263504.2017.1289273
Descargas
- PDF (English) 1148
Publicado
Cómo citar
Número
Sección
Licencia
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.