Comprehensive Nutritional Composition of Wild Meat: A Systematic Review Using Data Imputation with Artificial Intelligence
Comprehensive Nutritional Composition of Wild Meat
Visualizações: 153DOI:
https://doi.org/10.15451/ec2025-05-14.21-1-20Keywords:
Wild Meat, Nutritional Composition, Food Security, Artificial Intelligence, Systematic ReviewAbstract
While not promoting wild animal consumption, this study acknowledges its crucial role for Indigenous Peoples and Local Communities (IPLC) worldwide, making comprehensive nutritional data essential for informed dietary assessments and policy decisions. Employing advanced data imputation techniques to address data gaps ethically, this systematic review, following PRISMA guidelines, analyzed 20 peer-reviewed articles and one grey literature document. We focused on the nutritional composition of wild meat from 26 species across mammals, birds, and reptiles. We assessed 10 key nutrients, revealing significant variations. Notably, bird muscle tissue did not demonstrate statistically higher iron concentrations than previously recognized in mammalian muscle (p < 0.05), challenging established nutritional understanding of red and white meat. Reptile muscles contained 60% more iron than mammalian muscles, while bird muscles showed 200% higher potassium and omega-6 fatty acid levels compared to mammals (p < 0.01). Mammalian muscles exhibited the highest zinc content among taxonomic classes. As in the case of non-wild animals, viscera consistently showed higher mineral concentrations than muscle tissues across all species. These findings enhance understanding of wild meat's nutritional value, contributing vital data to food composition databases and supporting evidence-based policy decisions for communities reliant on these resources.
Downloads
References
Aguiar JPL (1996) Tabela de composição de alimentos da Amazônia. Acta Amazonica 26: 121–126. DOI: https://doi.org/10.1590/1809-43921996261126
Amici A, Cifuni GF, Contò M, Failla S (2015) Hunting area affects chemical and physical characteristics and fatty acid composition of wild boar (Sus scrofa) meat. Rendiconti Lincei 26 (3): 527–534. DOI: https://doi.org/10.1007/s12210-015-0412-7
Cao T, Jin JP (2020) Evolution of flight muscle contractility and energetic efficiency. Frontiers in Physiology 11. DOI: https://doi.org/10.3389/fphys.2020.01038
Cawthorn DM, Hoffman LC (2015) The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. Food Research International 76: 906–925. DOI: https://doi.org/10.1016/j.foodres.2015.03.025
Cozzolino SMF (2024) Biodisponibilidade de Nutrientes. 7th ed. Manole.
Damodaran SD, Parkin KL (2018) Química de Alimentos de Fennema. 5th ed. Artmed.
Danieli PP, Serrani F, Primi R, Ponzetta MP, Ronchi B, Amici A (2012) Cadmium, lead, and chromium in large game: A local-scale exposure assessment for hunters consuming meat and liver of wild boar. Archives of Environmental Contamination and Toxicology 63 (4): 612–627. DOI: https://doi.org/10.1007/s00244-012-9791-2
Dannenberger D, Nuernberg G, Nuernberg K, Hagemann E (2013) The effects of gender, age and region on macro- and micronutrient contents and fatty acid profiles in the muscles of roe deer and wild boar in Mecklenburg-Western Pomerania (Germany). Meat Science 94 (1): 39–46. DOI: https://doi.org/10.1016/j.meatsci.2012.12.010
DeClerck FAJ, Fanzo J, Palm C, Remans R (2011) Ecological approaches to human nutrition. Food and Nutrition Bulletin 32 (Suppl 1): S41–S50. DOI: https://doi.org/10.1177/15648265110321S106
Fa JE, Olivero J, Real R, Farfán MA, Márquez AL, Vargas JM, Nasi R (2015) Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Scientific Reports 5 (1): 8168. DOI: https://doi.org/10.1038/srep08168
Fernandes HR, Deliza R, Neto OC, Silva CM, Albuquerque NI de, Martins TR (2022) Effect of high hydrostatic pressure on the meat of collared peccaries (Tayassu tajacu) with different ages. African Journal of Food Science 16 (9): 215–225. DOI: https://doi.org/10.5897/AJFS2022.2218
Gálvez CH, Arbaiza T, Carcelén CF, Lucas AO (1999) Valor nutritivo de las carnes de sajino (Tayassu pecari), venado colorado (Mazama americana), majaz (Agouti paca) y motelo (Geochelone denticulata). Revista de Investigaciones Veterinarias del Perú 10: 1. DOI: https://doi.org/10.15381/rivep.v10i1.6707
Gaspar A, Silva TJP (2009) Composição nutricional da carne da tartaruga-da-Amazônia (Podocnemis expansa) criada em cativeiro e em idade de abate. Revista do Instituto Adolfo Lutz 68 (3): 419–425. DOI: https://doi.org/10.53393/rial.2009.v68.32703
Golden CD, Fernald LCH, Brashares JS, Rasolofoniaina BJR, Kremen C (2011) Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proceedings of the National Academy of Sciences 108 (49): 19653–19656. DOI: https://doi.org/10.1073/pnas.1112586108
Hoffman LC, Geldenhuys G, Cawthorn D (2016) Proximate and fatty acid composition of zebra (Equus quagga burchellii) muscle and subcutaneous fat. Journal of the Science of Food and Agriculture 96 (11): 3922-3927. DOI: https://doi.org/10.1002/jsfa.7623
Ingram DJ, Coad L, Milner-Gulland EJ, Parry L, Wilkie D, Bakarr MI, Fa JE (2021) Wild meat is still on the menu: Progress in wild meat research, policy, and practice from 2002 to 2020. Annual Review of Environment and Resources 46: 221–254. DOI: https://doi.org/10.1146/annurev-environ-041020-063132
Jacob MCM, Feitosa IS, Albuquerque UP (2020) Animal-based food systems are unsafe: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fosters the debate on meat consumption. Public Health Nutrition 23 (17): 3250–3255. DOI: https://doi.org/10.1017/S1368980020002657
Jarzyńska G, Falandysz J (2011) Selenium and 17 other largely essential and toxic metals in muscle and organ meats of red deer (Cervus elaphus) — Consequences to human health. Environment International 37 (5): 882–888. DOI: https://doi.org/10.1016/j.envint.2011.02.017
Johnson HE, Bleich VC, Krausman PR (2007) Mineral deficiencies in tule elk, Owens Valley, California. Journal of Wildlife Diseases 43 (1): 61–74. DOI: https://doi.org/10.7589/0090-3558-43.1.61
Landi N, Ragucci S, Di Giuseppe AM, Russo R, Poerio E, Severino V, et al. (2018) Nutritional profiling of Eurasian woodcock meat: Chemical composition and myoglobin characterization. Journal of the Science of Food and Agriculture 98 (13): 5120–5128. DOI: https://doi.org/10.1002/jsfa.9051
Lemke S, Delormier T (2017) Indigenous peoples’ food systems, nutrition, and gender: Conceptual and methodological considerations. Maternal and Child Nutrition 13 (Suppl 3): e12499. DOI: https://doi.org/10.1111/mcn.12499
Lima AT (2009) Caracterização físico-química da tartaruga da Amazônia de água proveniente de cativeiro e de habitat natural do estado do Amazonas. Scientific Initiation Research Report, Universidade Federal do Amazonas.
Lorenzo JM, Maggiolino A, Gallego L, Pateiro M, Serrano MP, Domínguez R, et al. (2019) Effect of age on nutritional properties of Iberian wild red deer meat. Journal of the Science of Food and Agriculture 99 (4): 1615–1623. DOI: https://doi.org/10.1002/jsfa.9334
Malafaia G, Martins RF, Silva ME (2009) Avaliação dos efeitos da deficiência proteica. Revista Brasileira de Saúde Materno Infantil 4.
Marco KCD (2007) Avaliação da exposição ao metilmercúrio e dieta rica em selênio sobre os níveis de óxido nítrico na população da região amazônica. Master’s thesis, Universidade de São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/60/60134/tde-25072007-105904/.
Masson L (1999) LATINFOODS and Its Role in the Generation and Compilation of Data for Latin America. Archivos Latinoamericanos de Nutrición 49 (Suppl 1): 89S-91S.
Menezes-Neto EJ (2024) GitHub – Nutritional Composition Wild Meat. https://github.com/eliasjacob/paper_nutritional_composition_wildmeat.
Milczarek A, Janocha A, Niedziałek G, Zowczak-Romanowicz M, Horoszewicz E, Piotrowski S (2021) Health-promoting properties of the wild-harvested meat of roe deer (Capreolus capreolus L.) and red deer (Cervus elaphus L.). Animals 11 (7): 2108. DOI: https://doi.org/10.3390/ani11072108
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine 151 (4): 264–269. DOI: https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Nasi R, Brown D, Wilkie D, Bennett E, Tutin C, van Tol G, et al. (2008) Conservation and use of wildlife-based resources: The bushmeat crisis. Secretariat of the Convention on Biological Diversity.
Neto JV, Bressan MC, Faria PB, Vieira JO e, Santana MTA, Kloster M (2006) Composição centesimal e colesterol da carne de jacaré-do-pantanal (Caiman yacare Daudin 1802) oriundo de zoocriadouro e habitat natural. Ciência e Agrotecnologia 30 (4): 701–706. DOI: https://doi.org/10.1590/S1413-70542006000400016
Nielsen MR, Meilby H, Smith-Hall C, Pouliot M, Treue T (2018) The importance of wild meat in the Global South. Ecological Economics 146: 696–705. DOI: https://doi.org/10.1016/j.ecolecon.2017.12.018
Oliveira A, Medeiros A, Medeiros M, Tregidgo D, Silva-Maia J, Jacob M (2025) Iron Content in Wild Animal Meats: A Systematic Review Comparing Mammals and Birds. Ethnobiology and Conservation 14 (4): 1-12. DOI: https://doi.org/10.15451/ec2025-11-14.04-1-12
Padovani RM, Amaya-Farfán J, Colugnati FAB, Domene SMA (2006) Dietary reference intakes: Aplicabilidade das tabelas em estudos nutricionais. Revista de Nutrição 19 (6): 741–760. DOI: https://doi.org/10.1590/S1415-52732006000600010
Pedraza DF, Sales MC (2017) Estudos realizados no Brasil sobre a deficiência e a suplementação de zinco: Ênfase em crianças. Revista Brasileira de Saúde Materno Infantil 17: 217–232. DOI: https://doi.org/10.1590/1806-93042017000200002
Pérez-Peña PE, Riveros-Montalván MS, Vargas-Arana G, Soria FD, Chumbe JV, Baca YB (2021) Consumo, microbiología y bromatología de la carne silvestre durante la COVID-19 en Iquitos, Perú. Ciencia Amazónica Iquitos 9 (2): 51–68. DOI: https://doi.org/10.22386/ca.v9i2.339
Price ER, Bauchinger U, Zajac DM, Cerasale DJ, McFarlan JT, Gerson AR, et al. (2011) Migration- and exercise-induced changes to flight muscle size in migratory birds and association with IGF1 and myostatin mRNA expression. Journal of Experimental Biology 214 (17): 2823–2831. DOI: https://doi.org/10.1242/jeb.057620
Rizvi S, Latif M, Amin M, Telmoudi A, Shah N (2023) Analysis of Machine Learning Based Imputation of Missing Data. Cybernetics and Systems 1-15. DOI: https://doi.org/10.1080/01969722.2023.2247257
Rudman M, Leslie AJ, van der Rijst M, Hoffman LC (2018) Quality characteristics of warthog (Phacochoerus africanus) meat. Meat Science 145: 266–272. DOI: https://doi.org/10.1016/j.meatsci.2018.07.001
Serrano MP, Maggiolino A, Landete-Castillejos T, Pateiro M, Barbería JP, Fierro Y, et al. (2020) Quality of main types of hunted red deer meat obtained in Spain compared to farmed venison from New Zealand. Scientific Reports 10 (1): 12157. DOI: https://doi.org/10.1038/s41598-020-69071-2
Sevillano-Caño J, Cámara-Martos F, Aguilar-Luque EM, Cejudo-Gómez M, Moreno-Ortega A, Sevillano-Morales JS (2020) Trace element concentrations in migratory game bird meat: Contribution to reference intakes through a probabilistic assessment. Biological Trace Element Research 197 (2): 651–659. DOI: https://doi.org/10.1007/s12011-019-02014-9
Soulsbury CD, Gray HE, Smith LM, Braithwaite V, Cotter SC, Elwood RW, et al. (2020) The welfare and ethics of research involving wild animals: A primer. Methods in Ecology and Evolution 11 (10): 1164–1181. DOI: https://doi.org/10.1111/2041-210X.13435
Spiegelaar N, Martin ID, Tsuji LJS (2019) Indigenous Subarctic food systems in transition: Amino acid composition (including tryptophan) in wild-harvested and processed meats. International Journal of Food Science 2019: e7096416. DOI: https://doi.org/10.1155/2019/7096416
Strazdiņa V, Jemeļjanovs A, Šterna V (2013) Nutrition value of wild animal meat. Proceedings of the Latvian Academy of Sciences Section B: Natural, Exact, and Applied Sciences 67 (4–5): 373–377. DOI: https://doi.org/10.2478/prolas-2013-0074
Torres PC, Morsello C, Orellana JDY, Almeida O, Moraes A de, Chacón-Montalván EA, et al. (2022) Wildmeat consumption and child health in Amazonia. Scientific Reports 12 (1): 5213. DOI: https://doi.org/10.1038/s41598-022-09260-3
Tregidgo D, Barlow J, Pompeu P, Parry L (2020) Tough Fishing and Severe Seasonal Food Insecurity in Amazonian Flooded Forests. People and Nature 2 (2): 468-482. DOI: https://doi.org/10.1002/pan3.10086
Webb EC, van Ryssen JBJ, Erasmus MEA, McCrindle CME (2001) Copper, manganese, cobalt and selenium concentrations in liver samples from African buffalo (Syncerus caffer) in the Kruger National Park. Journal of Environmental Monitoring 3 (6): 583–585. DOI: https://doi.org/10.1039/b106307n
Wei R, Wang J, Su M, Jia E, Chen S, Chen T, Ni Y (2018) Missing Value Imputation Approach for Mass Spectrometry-Based Metabolomics Data. Scientific Reports 8 (1): 663. DOI: https://doi.org/10.1038/s41598-017-19120-0
Zimmerman TJ, Jenks JA, Leslie DM, Neiger RD (2008) Hepatic minerals of white-tailed and mule deer in the southern Black Hills, South Dakota. Journal of Wildlife Diseases 44 (2): 341–350. DOI: https://doi.org/10.7589/0090-3558-44.2.341
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ana Luisa dos Santos Medeiros, Amanda Letícia Bezerra de Oliveira, Maria Fernanda Araújo de Medeiros, Daniel Tregidgo, Eliana Bistriche Giuntini, Elias Jacob de Menezes Neto, Juliana Kelly da Silva Maia, Michelle Cristine Medeiros Jacob

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.